Multi-Vehicle Autonomous Racing with Learning
MPC and Trajectory Forecasting

Rohan Sinha
dept. of Aeronautics and Astronautics
Stanford University
Stanford, USA
rhnsinha@stanford.edu

Abstract—We propose adapting the Learning Model Predictive
Control (LMPC) [1] algorithm to a multi-vehicle autonomous
racing problem. Instead of taking a game-theoretic approach to
reason intelligently about strategic interactions between agents,
we hypothesise that the influence of an autonomous agents’
decision making on its opponents can be learned safely online
through competitive interactions provided iterative updates to
the agent’s policy are small. We segment the control tasks
into separate elements in charge of maintaining safety, long-
term strategic behavior, and avoiding opponents. We showcase
our method on a simulated example of a race between two
autonomous cars and conclude that trajectory forecasting holds
promise for establishing intelligent competitive behavior between
agents.

Index Terms—predictive control, autonomous racing, behavior
prediction, multi-agent systems

I. INTRODUCTION AND MOTIVATION

To reliably deploy the next generation of autonomous
robotic systems in unstructured open-world environments, they
must safely interact with other agents such as humans and
other robots. In many of these settings, such as when an
autonomous vehicle must merge into traffic on a highway on-
ramp, the autonomous agent cannot communicate with other
agents to form a collaborative strategy. More importantly,
automated systems will often have to compete with other
agents to force their objective. Therefore, this requires the
development of strategies that intelligently reason about the
effect that the decisions made by an automated robot have on
the actions of the agents in its environment. In this work,
we propose to study a competitive interaction between an
automated system and other agents.

In particular, we focus on competitive racing with self-driving
cars. Autonomous racing has received considerable attention
in the robotics and control community in recent years, as it is
a multi-faceted problem that highlights many of the challenges
faced by modern autonomous systems [2]-[7]. By developing
algorithms for problems that push modern autonomy systems
to their computational and physical limits, we are likely to
gain insights and invent algorithms that will improve the safety
and performance of autonomous systems applied in the real
world. Autonomous racing is particularly difficult for four
main reasons.

Firstly, modelling the dynamics of a vehicle at its tractive
and handling limits is a challenging problem. The interactions

between the tires of a vehicle and the road surface are complex
and nonlinear [2], [3]. Due to the high speeds involved,
automated racing pushes deep into these nonlinear regimes.
Track conditions may vary from corner to corner, significantly
affecting these dynamics. Therefore, a mis-calibrated model
could cause the vehicle to push past the limits of static friction
with catastrophic results. Uncertainty in the models must be
taken into account and resolved through online learning to deal
without ever exceeding the handling limits.

Secondly, it is not obvious what the ideal racing line is, even
in a single-agent racing setting. Ideally, an agent with perfect
knowledge of the track conditions and its dynamics could
attempt to solve a tough nonconvex optimization problem to
determine the minimum-time trajectory to cross the finish line.
Even though solving such a problem exactly is intractable,
with modern computational resources such a trajectory can
be planned as a reference up-front using heuristics such as
contouring costs [3], [6] or to a local minimum using some
sequential programming technique. However, if the dynamics
turn out to be slightly different in real-life, it is not realistic to
recompute the reference online. Therefore, racing algorithms
should be able to learn a locally optimal racing line through
experience, just like Formula 1 drivers practice on a track
before a race.

Thirdly, automated vehicles must both avoid collisions with
opponents and reason strategically about their opponents’
behavior. For example, existing work generally assumes the
other agents act rationally with respect to some cost function
and adopt a game theoretic approach to reason about the
impact of an autonomous agent’s behavior on the other actors
in the system [5], [8]. Such approaches seem ideal for racing
problems, as a naive approach that makes predictions on
another agent’s behavior and plans around those predictions
won’t be able to exhibit the blocking and cutting-off behavior
necessary to win in racing. However, solving for policies that
form a Nash equilibrium is often intractable and tends to rely
on iterative approximation schemes that can be a burden for
real-time control. Moreover, these approaches often assume
the cost function of the opponents is known, even though it
is unlikely that the preference structure is known apriori for
human or other robotic opponents in a real-world setting.
The final challenge for autonomous racing algorithms is their
real-time feasibility. Especially iterative trajectory optimiza-

tion methods, such as game-theoretic planners are limited by
the amount of computation that can be done for real-time con-
trol. The computational constraints of autonomous racing are
somewhat unique: The better autonomous racing algorithms
become, the faster and more aggressively the vehicles will
race over the track. This requires algorithms to become more
competitive and less computationally intensive at the same
time, two requirements that are somewhat in tension with each
other.

II. CONTRIBUTIONS AND ORGANISATION

These four challenges make the multi-agent autonomous
racing problem highly complex and obviously intractable.
Therefore we think it is unlikely that practical algorithms with
provable safety and performance guarantees can be developed
for the most general problem setting. Instead, we propose
taking a data-driven approach by dividing the autonomous
racing task, and hence our policies, into several different
components. Application of the learning model predictive
control (LMPC) algorithm [1] to autonomous racing has
demonstrated great promise in learning locally optimal single-
vehicle autonomous racing policies online in combination with
online model learning strategies [2], and we hypothesize we
can extend these successes to multi-agent settings by encoding
effective long-term strategic decision making in the value-
function approximation.

Although at a first glance it seems impossible for trajectory
forecasting methods to allow for intelligent reasoning about
the effect of the control policy’s decisions on other agents,
we argue that it is possible to accurately learn to predict the
responses of opponents if we learn their responses in a com-
petitive environment online, provided updates to the ego policy
are small. This is because directly learning how the responses
change online, in tandem with policy learning, mitigates the
impacts of distributional shifts induced by updating the control
policy. This allows us to avoid making assumptions on the
preferences of the other agents and using costly game-theoretic
iterative best-response algorithms.

This paper is structured as follows: We discuss related
work in section §III and introduce our problem formulation in
section §IV. We then introduce a trajectory forecasting method
and provide a high-level, non-rigorous argument under what
conditions we can rely on the learned forecasts in §V. Then,
we present an simple adaptation of the LMPC algorithm [1]
to a multi-agent setting in §VI. We outline our experiment in
§VII and discuss the results in §VIII. We conclude and discuss
future work in §IX.

III. RELATED WORK

The learning model predictive control algorithm (LMPC)
[1] is a predictive control algorithm that uses data from
previous control iterations to learn optimal policies with safety
guarantees in the form of persistent constraint satisfaction.
The difference with regular MPC strategies is that in LMPC
the cost-to-go, often referred to as the value function, is ap-
proximated based on data from previous trials. Application of

LMPC in tandem with an online system-ID strategy based on
local linear regression was shown to learn highly competitive
policies for a single-agent racing task at the handling limits of
the vehicle [2]. This was accomplished by updating the value
function in a way that made the LMPC problem equivalent to a
minimum-time control formulation [9]. The LMPC algorithm
has been adapted to a multi-agent setting before [7], but
the iterative response trajectory optimization scheme only
allowed for a single response iteration to be completed in real-
time, limiting its performance. This motivates our data-driven
approach, avoiding the need for sequential algorithms.

In game theory, all the agents are assumed to act rationally
towards some cost function. Given this knowledge, it becomes
possible to anticipate how the other opponents will respond
to decisions from any given agent. The agents are said to
be at a Nash-equilibrium if it is in none of the agents’
interest to change their behavior given that the others keep
their policy the same. Since Nash-equilibria result in a stable
interaction, they are desirable policies to search for in a com-
petitive robotic setting. Although solving for Nash-equilibria
is generally intractable, recent work on autonomous racing
in drones [5] applied an iterative best-response algorithm and
used sensitivity analysis to get real-time control performance.
However, the preferences of the other agent were assumed as
known. Other work in autonomous driving [8] used inverse
reinforcement learning strategies [10] to learn the incentive
structures of other road users and applied a simpler iterative
response optimization scheme to approximate an equilibrium
solution. However, inverse RL methods in this application [8]
did not consider the confidence or uncertainty in the learned
reward functions, thereby making it unclear if the computed
equilibrium policies are also Nash-equilibria for the true multi-
agent interaction. In addition, it is often unclear if humans act
rationally with respect to a cost function in some hypothesis
class, or if other agents have access to the same information
as the ego agent to make their decission. Moreover, it is
not obvious how one would propagate uncertainty or solve
for robust nash-equilibria for all reward functions in some
confidence set. Therefore, we simply consider the uncertainty
on trajectory forecasts to reduce the likelihood of collisions.

Some approaches to the autonomous racing problem have
focused more on robust control under model uncertainty, and
emphasize learning optimal trajectories to a lesser extent. For
example, Hewing et al. used Bayesian regression to learn
an additive nonlinear component of the dynamics online for
robust control, and used an offline trajectory optimizer to
find a reference trajectory for the nominal model using a
contouring cost [3]. Although this achieves good performance
in a controlled experiment, the reference trajectory cannot
be adapted online once the uncertainty in the dynamics is
resolved. A similar strategy is employed by Liniger et al.,
who considered a multi agent racing problem [6]. The authors
use a shortest paths algorithm online as a heuristic to decide
how to overtake other agents, enforced by setting constraints
on an MPC solver. Most related to our approach is recent work
that takes a reinforcement learning approach [4]. The authors

synthesise a large set of decently performing policies that
select waypoints through self-play in a simulated environment,
after which the best policy is deployed. The waypoints are
tracked using a sampling based trajectory optimizer, and the
authors use an online learning algorithm to find a mixture
of candidate policies to match the behavior of an opponent
online. Although the authors do not investigate the ability of
their online learning approach to generalize to agents not in the
synthesized policy set and the experimental competitiveness of
the method is low, this method suggests that learning to predict
opponents’ behavior through online trajectory forecasting is
possible if the model is learned during competitive play.

IV. PROBLEM FORMULATION

We consider the discrete time control of a system formed
by the independent dynamics of two agents, the ego (agent
1) and the opponent (agent 2). For simplicity, we assume the
dynamics of both agents occupy the same state space. Let
x}, w7 € R" represent the states of the ego and the opponent
at time ¢ respectively, and let uj,u? € R™ be their respective
inputs. We write the known joint dynamics with joint state

20 = [0l T,22T]T, as

L1 = f(mfn u,},u?) = [fl(l‘z%a ufi)—ra f2(m1%7 th)T]Tv (1)
where f; : R™ x R™ — R"™ represents the independent
dynamics of the agents. In addition, both agents are subject to

state and input constraints:
TLEXCRY, wlcUCR™VE>0,i=1,2 (2

We assume access to a known safety margin A C X that
defines whether the two agents are in a collision or not. We say
that the agents are in a collision state if and only if z; € 27 ®
A, where @ is the Minkowski sum operator. This definition
reflects the fact that the states of the system represent the
physical positions of vehicles that have volume. The design
goal of this work is to construct a policy 71 : R” x R™ — R™
for the ego agent to safely achieve a competitive objective.
We assume that both agents can perfectly observe the state of
the system. In addition, we make some minimal assumptions
on the behavior of the opponent. In particular, we assume that
the opponent behaves according to a consistent policy:

1 .2

uf = mo(xy,x?) YVt >0 3)

However, the opponent’s policy is unknown, we only assume
that it is fixed in time. The ultimate objective of the control
task for agent 1 is to minimize the following infinite time
optimal control problem

Ji(z) = min Zh(mt,u%) 4)
Yt =0
st. w1 = f(xs,up, mo(xy)) VE>0
T €X, ul €U vt >
T ¢rioA vt >0
o =T

Unfortunately, the objective (4) is intractable for many reasons:
The horizon is infinite, and since the dynamics are nonlinear
and the collision avoidance constraints are not convex the
problem (4) is non-convex. Moreover, since the policy of the
opponent is unknown, we cannot hope to solve (4). Instead, we
take an iterative learning approach and attempt the task episod-
ically from the same initial condition and solve a finite horizon
approximation of (4) using Learning MPC [1] online. By iter-
atively attempting the task, the controller should improve its
performance over time. At the j’th iteration of the control task,
we therefore assume access to trajectory data of the previous
iterations 73, = {{1.0,up 0, UZ o }s - > {Th, Ty s Up 5 UR 1,
for k =0,...,j5 — 1. Here, we use the double subscript x, ¢
to refer to the state recorded at time ¢ of the k’th iteration of
T}, timesteps.

V. TRAJECTORY FORECASTING

In practice, learning an opponents’ policy is challenging, as
perfect state and input information may not be shared between
the agents. In addition, the dynamics of the opponent may not
be identical to the dynamics of the ego vehicle. We therefore
do not construct an estimate of the opponent’s exact policy
Ta(x¢) in this work. Instead, we simply learn to predict the
next NV states of the opponent’s dynamics:

X7 = [116+ 22 vpe) = ho(e) &)

Here, ﬁf it refers to the prediction of the state of agent 2 at
time ¢ + ¢, made at time ¢ using the learned function hg(-)
parametrized by 6. However, the joint state space is usually
too high-dimensional to properly learn the opponents’ policy
from a handful of trajectories that only visit a small subset of
the state space. For a safety critical control task, acting on poor
predictions of an opponent’s behavior can lead to dangerous
situations and should be avoided.

This is particularly important because the opponent acts
based on the joint state of the system, and therefore the
ego agent’s future decisions will affect the validity of the
prediction (5). Via a heuristic argument, we consider this
as a problem of learning under a distribution shift. Even
though we do not explicitly consider noise in the problem
formulation 1, it is in general the case that if we fix the
policy of the ego vehicle 7 (x;) and run the control task
to collect data, the control policy will induce a distribution
over closed loop trajectories 7 ~ Py, (7). Therefore, under
a fixed ego policy, we should be able to efficiently learn the
opponent’s behavior over the induced trajectory distribution.
This is particularly easy if the dynamics are deterministic,
since in this case a fixed ego policy and a consistent opponent
will result in the same system trajectory every time the control
task is attempted. The difficulty arises when we update the ego
policy between iteration 7 and j + 1, since this results in a
shift in the distribution over trajectories P, (1) — P g (1)
that requires us to extrapolate the estimated behavior of the
opponent to states outside of the domain observed previously.
With some abuse of notation, if we assess the performance
of the learned trajectory forecast hy(x¢) using a loss criterion

L(hg(x:),m2(+)) and define the expected loss induced by the
trajectory distribution P, (1) as

L (0) =Ep , [t(ho (), m())], (6)

then we can write the expected loss of the estimate on the
trajectory distribution induced by the updated policy 7r{+1(~)
as

L1 (0) = Loy (0) + (Lo (0) = Ly 0)). (D)

™

Equation (7) makes it clear that if we ensure the distributional
shift over trajectories between the ego policies at iteration j
and j + 1 is small, then we can expect the difference term
in (7) to be small, therefore implying that our estimate of the
opponent’s behavior will be accurate for the updated policy as
well. As a result, we propose a control algorithm for which
the policy update after each iteration j is small as a proxy to
ensure the trajectory distribution is small. In other words, as
long as we make incremental updates to the ego policy () &
7371 (), then we can likely learn the opponent’s behavior by
play (or in competition) without creating dangerous situations.

VI. LEARNING MODEL PREDICTIVE CONTROL

The Learning Model Predictive Control (LMPC) algorithm
is precisely a policy iteration method that makes incremental
updates between control iterations [1]. We start with the
following observation: Since we assume the opponent acts
consistently according to a fixed policy on the joint state,
the system dynamics evolve only as a function of the ini-
tial condition and the decisions that the ego vehicle makes,
since we can write 7,1 = f(zp,ul) = flag,ul, mo(xy)).
Therefore, this allows us to apply the existing Learning Model
Predictive Control algorithm [1] to iteratively improve a finite
horizon approximation of the ego vehicle’s objective (4).
We apply a formulation almost identical to [2]. The LMPC
algorithm relies on value function approximation and a learned
terminal constraint to guarantee recursive constraint satisfac-
tion, asymptotic stability, and performance improvement. For
nonlinear systems, retaining these guarantees requires mixed
integer programming [1]. If we convexify the problem, these
safety guarantees only hold for linear systems. However, the
local convex approximations that we make have shown good
performance in practice [2].

At iteration j, we define the cost-to-go samples for all

previously recorded states for iterations k =0,...,7 — 1 and
timesteps t = 0,...,T} as
Tk
Qi = Z Wi, up ;) ®)
i=t

We then define the hyperparameter nss as a positive integer
that determines how many sampled states are used to construct
the value function approximation. At a query state x, we define
the timestep for which the sampled trajectory k is nearest to
the query state as

ty =a i — 212 9
k() rgterf[l)l’%"]llx Tt ©)

then, we define the local safe-set around a query state x for
the sampled trajectory k as
Nss

SSy(z) = U Th ity (x)

1=—MNgss

(10)

The local safe-set for trajectory k essentially collects 2ngg
contiguous states centered around the sampled state nearest
to the query point. For presentational clarity, we ignore edge
cases around the start and end state of the trajectory. We
then take the local safe-set around a query point x at control
iteration j as

Jj—1
S8 (x) = | J SSk (), (11)
k=0
and the convex local safe-set at iteration j around query point
x as

CS?(z) = conv(SS?(x)) (12)

We will use (12) as a data driven terminal constraint. In
addition, we define the value-function approximation @7 :
CS’ — R at iteration j associated with a local convex safe-
set as the Barycentric interpolation of the cost-to-go samples
(8) associated with the trajectory samples included in the
convex safe-set (12). To do this, we define the set

oX () ={qu,: qr: € SSj(m)} (13)

with cardinality |QS’(x)] = |SS(x)] = 2jn.. With a
slight abuse of notation, we use the shorthand x;, ¢; to denote
the entries of SS’/, Q&’ respectively. The value function
approximation at a query point x is then defined as the
Barycentric interpolation using the following LP:

2jNss
j _ .
r) = min AiGi 14
@'(2) = min >, Ay (14
=1
2inss 2Jnss

s.t. Z /\z = 1, Z)\zxz =
i=1 i=1

We then write the Learning MPC problem we attempt to solve
at time ¢ of iteration j using the trajectory forecast hy(x;) =
[#7, 10> - £7,)] @s the optimization

N-1
SN (xj1) = min Zh($t+i|t7u%+i\t) + Q7 (zeynye) (15)
Yetile =0
. 1 _ 1 1
St Ty = f1($t+i\t’ ut+i|t)

_ AT 22T 1T
Titilt = [xt+i|t7'rt+i|t]

:C%Hlt e X, uiﬂ-‘t euU
Ti4N|t € cs’ (T4qnt)
Ty & e ® A
Tt = Tyt
The LMPC problem (15) depends only on the current state and

uses the convex local safe-set and value function approxima-
tions to improve performance using recorded data. In addition,

problem (15) uses the independence of the dynamics (1) and
the trajectory forecast (5) to immediately optimize the ego
vehicle’s trajectory instead of reasoning about the response of
the opponent to the actions of the ego. We emphasize that (15)
is still non-convex, therefore we discuss some implementation
details in §VII. Let the solution of (15) be [uil’t*, .. wifm -
We then apply the first input of the LMPC trajectory to the
system at time ¢ to close the loop:

1 _ 1
Uy = Uy

(16)

In practice, under the right selection of hyperparameters, the
closed loop system formed by (1), (15), (16) typically con-
verges to a locally optimal trajectory for the objective (4) [2].
This is based on the assumptions that the LMPC problem (15)
ensures collision avoidance, and ultimately cannot improve its
trajectory anymore. Practically, this means that the learned
trajectory forecaster (5) and the LMPC policy (16) converge
to an equilibrium trajectory.

VII. EXPERIMENT DETAILS AND HEURISTICS

To illustrate our approach, we simulate a single-lap race
between two autonomous vehicles. We simulate the vehicle
dynamics (1) as two identical dynamic bicycle models with
global state x! = [:E,y,w,vm,vy,d}], where x,y indicate
the position of the vehicle, ¢ its heading, and v,, v, its
longitudinal and lateral velocities. The bicycle model has two
inputs ui = [a,d], the longitudinal acceleration and steering
angle. The continuous-time dynamics are given as:

& = cos(¥)vy — sin(¢)vy (17

¥ = sin(¢)vy — cos(y)v, (18)
. 1

Vg =PV, +a— e sin(4) (19)

by = —vg + %(Fcf cos(6) + F.,.) (20)

)= %(Fcf cos(d) — F.,.) 1)

With mass m = 2kg, inertia I = .03kg m? and length
l = .125m. The front and rear cornering forces are functions
of the tyre slip angles and stiffness constant ¢ = 46N/rad,
F.y = —cay, Fo, = —ca,, with ay = arctan((v, +
1) /|v2]) — 6 and a, = arctan((v, + l1)/|v.]). As in [2],
we transform the global vehicle state position and orientation
into a curvilinear reference frame along the centerline of the
track. As illustrated in Fig. 1, this allows us to rewrite the
state as i = [s, ey, €y, Vs, Uy, w} with s as the distance along
the centerline of the track and e,,ey as the tracking and
orientation error. We simulate the system at a timestep of .1s
using a 4th order Runge Kutta solver.

For the opponent’s policy, we take a simple MPC that
follows the centerline of the racetrack at a fixed reference
speed using a linearized dynamics model along the centerline.
The initial condition of the race is identical at each iteration:
The ego vehicle starts at the center of the starting line, and the
opponent is given a fixed head start. The ego vehicle updates
its performance using the LMPC policy formed by (15), (16).

Fig. 1. Curvilinear reference frame along track centerline.

3

As a heuristic for a “win the race” objective, we take the
objective of the LMPC to minimize the time to complete a
lap using the the objective h(z¢,u}) = 1{s > tracklength}
where Xy is the set of all states across the finish line. We
also added a penalty on the rate of change of the inputs.
We set a speed limit of 2 m/s, restricted steering between
+7/6, and set the acceleration limit to .5m/s*. We also added
constraints associated with the track boundaries. We set the
prediction horizon to N = 10. To initialize the simulation, we
record 3 trajectories in which both agents use the simple lane-
keeping MPC. This allows us to initialize the safe-set (12)
and value function approximation (14) with some initial data.
We set nss = 20 and only use the fastest 3 trajectories from
previous iterations to construct the safe-sets and value-function
approximations (12), (14). We learn the trajectory forecasting
function hy(-) using Gaussian Process regression [11].

To solve the LMPC problem (15), we use a heuristic
method to compute the constraint tightening associated with
the collision avoidance constraint z;,;, ¢ @7 ,, ® A in
(15). We make the constraint tightening active if the vehicle
positions |s! — s?| < 2m and use the curvature of the road
to decide if an overtake should be made to the left or right.
If the curvature x(s) > 0, this indicates a left-turn, and we
tighten the constraints to force a left overtake. If the curvature
is negative, this indicates a right turn, and we tighten the
constraints to force the ego vehicle to keep a safe distance to
the right of the opponent. We then solve the tightened LMPC
problem (15) using a single iteration of Sequential Convex
Programming (SCP). We initialize the SCP iteration using the
previous timestep’s solution and a future state predicted using
the convex safe set and value function approximation as in [2].
We found that using this initialization, solving multiple SCP
iterations did not lead to significant performance increases. We
implemented our algorithm in Python using CVXPY and the
OSQP solver [12]. To increase the performance, we build the
solvers once using parameter objects and update the parameter
values online without rebuilding the solvers. This allowed the
simulation to run at about 3x real-time speed on a standard
laptop.

VIII. RESULTS

We ran the experiment for a total of 10 laps after collecting
the 3 initialization laps. No collisions occurred during any of
the laps. The opponent starts with a significant advantage over
the LMPC policy, but after 10 laps the ego agent has efficiently
learned to overtake the opponent and win the race. The

Lap Time Vs. Iteration

— =
'S S

)

Lap Time (s)

—

2 4 6 8 10
Iteration

Fig. 2. Lap time per iteration for the LMPC policy.

trajectory forecasts are accurate throughout the experement,
although our task is obviously somewhat simplified since
we learn to forecast the trajectory of a fixed MPC policy.
In addition, it seems like the heuristic overtaking method
effectively avoids collisions. As shown in Fig. 2, the LMPC
policy rapidly improves, reducing the lap time by about 7
seconds from the initial trajectory. Fig. 3 shows how the
ego vehicle’s velocity profile increases as more iterations are
completed. Fig. 4 shows that the ego vehicle learns a locally
optimal racing line around the L-shaped racetrack. The ego
starts near the bottom right of the track, around the x = 2
mark. The opponent starts on the other side of the semicircular
curve at about x = 2, y = 2. The agents complete the labs
counterclockwise.

Finally, Fig. 5 shows how the ego vehicle learns to overtake
the opponent on the second lap. During the previous iteration
the LMPC’s collision avoidance constraints were active at the
corner, forcing the LMPC to take an inside line. On the second
lap, the LMPC knows to plan more efficiently into the safe
set associated with the inside line overtake. Still, the collision
avoidance constraints from the trajectory forecast are active,
resulting in a small kink in the predicted trajectory to guarantee
the ego doesn’t collide with the opponent. As the LMPC learns
to drive faster around the track, the point at which the ego
overtakes the opponent becomes closer to the starting line.
On the final trajectory, the ego overtakes the opponent around
the apex of the turn at the top of the L-shaped track (about

Vehicle Speed over Time

—
oo

Z
& 1.6
g 0 =—— lap1
T 14 lap 4
g
N9 lap 9
—== gpeed limit

<

0 5 10 15
Time in seconds

—

Fig. 3. Ego vehicle speed over time for several iterations.

Convergence of LMPC

07 final lap
init lap
7 41
)
<
2y
01

-2 0 2 4
X In meters

Fig. 4. Initial and learned trajectories of the LMPC. The track limits and
center-line are displayed in black and red.

x = —1, y =5 in Fig. 4).

IX. CONCLUSION AND FUTURE WORK

In this work, we presented a data-driven method for multi-
vehicle autonomous racing. We propose to learn a competitive
policy by interacting with an opponent during competition and
learning its behavior. We construct a predictive control algo-
rithm that we observed to be safe during the learning process.
Under an assumption that an opponent acts consistently with
respect to the joint system state, we used learning methods
to forecast the evolution of the opponent’s state online. We
applied a Learning MPC to iteratively update a data-driven
value function approximation and terminal constraint to learn

Lap 2

[N

y in meters
—

—— LMPC prediction i
07 traj forecast

safe set

-1

3.0 20 —15 —10

X In meters

25

Fig. 5. The LMPC going for an overtake on lap 2. The ego vehicle is shown
in blue, the opponent in red. The track limits and center-line are displayed in
black and red.

a competitive policy, and edited the constraints of the LMPC
to avoid collisions along the prediction horizon online using
trajectory forecasts. We argued that the incremental policy
updates of the LMPC reduce the distribution shifts that can
impact the accuracy of the trajectory forecasts, thereby increas-
ing the reliability of the predictions. Simulated experiments
against a simple MPC opponent showcased how this approach
was rapidly able to learn to win the race.

Although our results are encouraging, we were unable to
simulate our algorithm against agents that exhibit more com-
petitive blocking and overtaking behavior. Therefore, future
work should further test and benchmark our approach to
accurately quantify the performance of our methods against
more general competitors. Furthermore, we use a heuristic
method to decide between left and right overtakes. In future
work, it would be interesting to examine whether this strategic
decision making can be learned as well. Moreover, plan-
ning around (Bayesian) confidence intervals on the trajectory
forecasts could further improve the safety of our approach.
Finally, our method can currently only learn the behavior of
a single opponent by competitively interacting with it. Future
work should investigate learning methods that can be used to
generalize behaviors of other agents and quickly adapt to new
opponents, for example by using meta-learning [13].

REFERENCES

[1] Ugo Rosolia and Francesco Borrelli. Learning Model Predictive Control
for Iterative Tasks. A Data-Driven Control Framework. IEEE Transac-
tions on Automatic Control, 63(7):1883-1896, July 2018. Conference
Name: IEEE Transactions on Automatic Control.

[2] U. Rosolia and F. Borrelli. Learning How to Autonomously Race a
Car: A Predictive Control Approach. [EEE Transactions on Control
Systems Technology, 28(6):2713-2719, November 2020. Conference
Name: IEEE Transactions on Control Systems Technology.

[3] Lukas Hewing, Juraj Kabzan, and Melanie N. Zeilinger. Cautious Model
Predictive Control using Gaussian Process Regression. May 2017.

[4] Aman Sinha, Matthew O’Kelly, Hongrui Zheng, Rahul Mangharam,
John Duchi, and Russ Tedrake. FormulaZero: Distributionally Robust
Online Adaptation via Offline Population Synthesis. In International
Conference on Machine Learning, pages 8992-9004. PMLR, November
2020. ISSN: 2640-3498.

[5] Riccardo Spica, Davide Falanga, Eric Cristofalo, Eduardo Montijano,
Davide Scaramuzza, and Mac Schwager. A Real-Time Game Theoretic
Planner for Autonomous Two-Player Drone Racing. /IEEE Transactions
on Robotics, 36(5), 2020.

[6] Alexander Liniger, Alexander Domahidi, and Manfred Morari.
Optimization-based autonomous racing of 1:43 scale RC cars. Optimal
Control Applications and Methods, 36(5):628-647, 2015. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/oca.2123.

[7] Lukas Brunke. Learning Model Predictive Control for Competitive

Autonomous Racing. arXiv:2005.00826 [cs, math, stat], May 2020.

arXiv: 2005.00826.

Dorsa Sadigh, Shankar Sastry, Sanjit A Seshia, and Anca D Dragan.

Planning for Autonomous Cars that Leverage Effects on Human Actions.

page 9.

Ugo Rosolia and Francesco Borrelli. Minimum time learning model

predictive control. International Journal of Robust and Nonlinear

Control, n/a(n/a).

[10] Andrew Y. Ng and Stuart Russell. Algorithms for Inverse Reinforcement
Learning. In in Proc. 17th International Conf. on Machine Learning,
pages 663—-670. Morgan Kaufmann, 2000.

[11] Carl Edward Rasmussen, Christopher K. I. Williams, and Francis Bach.
Gaussian Processes for Machine Learning. MIT Press, 2006.

[12] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded
modeling language for convex optimization. Journal of Machine
Learning Research, 17(83):1-5, 2016.

[8

[t

[9

—

[13] James Harrison, Apoorva Sharma, and Marco Pavone. Meta-learning
Priors for Efficient Online Bayesian Regression. In Marco Morales,
Lydia Tapia, Gildardo Sanchez-Ante, and Seth Hutchinson, editors,
Algorithmic Foundations of Robotics XIII, Springer Proceedings in
Advanced Robotics, pages 318-337, Cham, 2020. Springer International
Publishing.

