
1

Pose Graph Optimization using Matrix Sketching
AA 273 Spring 2021, Prof. Mac Schwager

Rohan Sinha and Emiko Soroka

Abstract—State-of-the-art algorithms for the simultaneous lo-
calization and mapping (SLAM) problem in robotics favor a pose
graph-based representation of the problem over more traditional
hidden Markov models. Graph-based SLAM algorithms rely on a
front-end for measurement processing and data association, and
a back-end solver that optimizes a large nonlinear least-squares
problem, typically using iterative methods such as Gauss-Newton.
Fast back-end implementations are critical for real-time state
estimation. To this end, we proposed approximating the solutions
of the Gauss-Newton iterations using matrix sketching, a method
of dimensionality reduction for fast randomized linear algebra.
We applied row sampling to several benchmark problems but
determined that due to the sparsity of the pose graph matrices
and lack of redundant information, Gauss-Newton for pose graph
optimization is not a good candidate for sketching methods.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a fun-
damental problem in robotics, enabling autonomous robots
to build maps of unknown environments and localize within
them. This has given modern autonomous systems the ability
to navigate through a priori unmapped environments. Algo-
rithms for SLAM have a long history spanning several decades
and can broadly be classified as either filter-based or graph-
based [15, 6]. Many state-of-the-art algorithms favor a graph-
based approach, as its framework is more modular and can
be applied to complex problems like monocular camera-based
SLAM [12] where direct depth/spatial measurements (such as
those from a LiDAR) are not available, but relative information
can be extracted between frames.

A. Filter-based SLAM

Filter-based algorithms cast the SLAM problem as a more
standard state estimation procedure for a Markovian dynamical
system [15]. The goal is to infer the map m and state trajectory
x1:T from an initial position x0 and a sequence of measure-
ments y1:T . This can be done using a Markovian forward
model of the dynamics p(xT |x0:T−1) = p(xT |xT−1) and a
measurement likelihood model p(yt|xt,m). By augmenting
the state of the forward model with a data structure for the
map, such as an occupancy grid, a state estimation algorithm
like the extended Kalman Filter (EKF) can be used to perform
SLAM [15].

B. Graph-Based SLAM

When a direct measurement model is not available, graph-
based SLAM offers a solution. These algorithms produce a
posterior map estimate m and trajectory x0:T by processing
the data in a three step pipeline. The first step is to pre-
process the observations in a consistent fashion. For example,

in computer vision this typically entails identifying visually
distinctive regions in an image and building unique descriptors
of these keypoints using algorithms like SIFT [11]. These
descriptors are then used to recognize the same locations in
other measurements.

The second stage is data association, in which a pose
graph is constructed from the preprocessed data. Each vertex
of the graph represents a measurement and an associated
unknown pose of the robot. An edge is added between the
vertices associated with poses xi and xj if a “virtual mea-
surement” zij can be identified between them [6]. Continuing
our computer vision example, we would find a consistent
affine transformation between shared keypoints in the images.
This transformation represents a noisy estimate of the relative
motion of the robot [12].

In the third step, the SLAM backend applies an optimization
routine over the pose graph to find the maximum likelihood
estimate of the poses x1:T given the virtual measurements.
This process, referred to as pose graph optimization (PGO)
involves solving a nonlinear least squares (NLLS) problem.
Efficient solvers are critical to solve the resulting large-scale
optimization problem for real-time SLAM.

In this work, we investigate the application of randomized
algorithms to speed up the pose graph optimization problem.
In particular, we apply randomized matrix sketching algo-
rithms to decrease the size of the least-squares subproblems
solved by an iterative Gauss-Newton solver. We first review
related work on PGO and application of randomized methods.
Then we review how the PGO problem can be solved using
Gauss-Newton and how matrix sketching algorithms can be
applied to a NLLS problem. We benchmark the performance
of these algorithms on several existing datasets and conclude
that the sparse nature of the pose graph generally means that
matrix sketching techniques do not achieve significant benefits.
However, if the pose-graph is sufficiently dense, sketching
algorithms can improve computational speed and improve the
convergence behavior of the solver.

II. LITERATURE REVIEW

Grisetti et al. [6] provide an overview of PGO with emphasis
on how it can be implemented in software. Their paper outlines
the Gauss-Newton method of solving the problem: a relatively
simple algorithm. While not focused on PGO, Pilanci et al.
[14] propose a sketched variant of Gauss-Newton to provide
fast computation for optimization over large datasets. These
two papers motivated us to apply the sketched Gauss-Newton
algorithm to the PGO problem.

Other common methods to solve PGO include stochastic
gradient descent and Gauss-Seidel relaxation [2]. Interestingly,

2

several papers discuss randomized Gauss-Seidel approaches,
where portions of the data are sampled probabilistically, for
solving linear least-squares problems [13]. This approach
has been shown to converge in the linear case [1]. Though
PGO is a nonlinear least-squares problem, the results suggest
randomized Gauss-Seidel as another candidate to reduce the
cost of graph-based SLAM.

A more complex method is factor descent. Vallvé et al
[16] take advantage of structure in the SLAM problem to
seek a solution based on sparsification. Keeping the problem
sparse reduces the computational cost. However, this method
is complex and more difficult to implement.

Finally, bundle adjustment is a procedure that combines the
SLAM front and back-ends, solving the data association and
graph optimization problems simultaneously. This is typically
applied to visual SLAM problems, where one must determine
the most likely camera poses for a set of images [4] and
presents a direction for future work on randomized optimiza-
tion algorithms in SLAM.

Due to time constraints, in this paper we focus on the Gauss-
Newton method for pose graph optimization.

Computational Cost

To reduce the computational cost of the PGO algorithm,
we apply matrix sketching to approximate the Gauss-Newton
update. Carlone [2] established theoretical properties of the
PGO problem that make it surprisingly well-behaved despite
being a nonlinear, nonconvex optimization problem. In par-
ticular, when orientation measurements are available for the
robot, these results establish a convergence domain for the
PGO problem and show that convergence can be improved
by scaling relative position measurements. Well-behaved con-
vergence suggests that even with approximation errors intro-
duced by sketching, the algorithm can still converge. More
recently, a probabilistic bound on sketched Gauss-Newton was
established relating the size of the sketched problem (which
is always less than the size of the original problem) to the
probability that the result is within some ε of the true NLLS
solution [14].

III. GRAPH SLAM AND POSE GRAPH OPTIMIZATION

In this section we detail how graph based SLAM algo-
rithms construct maps of their environments and formulate the
pose graph optimization problem that we will apply matrix
sketching to. Modern SLAM architectures generally consist
of a front-end that abstracts away the measurement process
and a measurement agnostic back-end that constructs the map
through a process called Pose Graph Optimization [6]. This
allows modular development of SLAM algorithms for different
sensing modalities, as the back-end can remain unchanged
regardless of whether the measurements are made through
cameras (as in [12]), or through LiDAR range finders (as in
[6]). The presentation in this section closely follows that in [6],
though we formulate the problem in a manner more amenable
to the sketching approach we seek to apply.

In graph-based SLAM algorithms, it is assumed that the
robot has recorded data for T > 0 timesteps, yielding a

dataset of measurements y1, . . . yT . To identify the map, the
SLAM algorithm must estimate a posteriori the robot states
x1, . . . , xT that produced the measurements. Instead of using
an arbitrary state variable and transition function, graph-based
SLAM algorithms are constructed as general-purpose pack-
ages for mobile robots. Therefore, these algorithms represent
the trajectory taken by robots using state variables called
poses. In 2D, a pose x ∈ R3 is defined as

xt =

pxtpyt
θt

 =

[
pt
θt

]
,

where pxt and pyt denote the position of the robot in the x− y
plane and θt is the heading angle of the robot.

The front-end of the SLAM system identifies correlations
between measurements to construct the pose graph. In the
pose graph G = (V, E), vertices (V) represent a measurement
and robot pose pair (yt, xt) that were recorded at the same
timestep. The robot pose xt is unknown and needs to be
estimated by the SLAM back-end. Edges (E) between the
vertices are added in the data association step: if a “virtual
measurement” can be identified between two vertices, an
edge is placed between them [6]. In vision-based SLAM,
for example, this identification typically entails identifying
visually distinctive keypoints (i.e. “corners”) in each image.
The keypoints are then associated with a descriptor extracted
from the measurements so that the same keypoints can be
recognized in multiple measurements. When two images yi
and yj share many identical keypoints, we can be confident
that the images record roughly the same region of space.
The data-association algorithm then adds an edge between
the vertices i, j associated with the measurements, while the
front-end identifies the virtual measurement as the relative
transformation zij ∈ R3 between the measurements and its
associated information matrix Ωij � 0.

The virtual measurement zij is modelled as normally
distributed according to a mean function ẑ(xi, xj) so that
zij ∼ N (ẑ(xi, xj),Ω

−1
ij). The relative transformation between

two poses xi, xj is straightforward to model, establishing the
mean function as

ẑ(xi, xj) =

[
R>ij(R

>
i pj − pi)

θj − θj

]
, (1)

where Ri and Rij are the 2D rotation matrices associated with
θi and θj − θi. As a result, the negative log-likelihood of a
virtual measurement then satisfies (2):

− log(p(zij |xi, xj)) ∝ Fij(xi, xj), (2)

Fij(xi, xj) := (zij − ẑ(xi, xj))>Ωij(zij − ẑ(xi, xj)).
The back-end of the SLAM system is then tasked with

finding the maximum likelihood estimate (MLE) of the poses
in the graph. Using (2), the MLE problem can be written as
the nonlinear least-squares problem (3):

min
x1:T

∑
(i,j)∈E

Fij(xi, xj) := F (x1:T). (3)

Solving for a local minimum of the nonconvex problem (3)
will solve the PGO problem. The most common method of

3

−200 −100 0

x (m)

−200

−100

0

y
(m

)
Pose Graph at iter 0

Edges

Poses

−200 0

x (m)

−300

−200

−100

0

y
(m

)

Pose Graph at iter 4

Edges

Poses

−200 −100 0

x (m)

−200

−150

−100

−50

0

50

y
(m

)

Pose Graph at iter 9

Edges

Poses

Block Sparcity Pattern of ATA

Fig. 1. Convergence of the Gauss-Newton algorithm on pose data of MIT’s Killian Court [3], along with the sparsity pattern of the normal equations.

solving (3) is to apply the iterative Gauss-Newton algorithm
[6, 10]. In Gauss-Newton, we iteratively construct quadratic
approximations of the objective around candidate solutions
x(t). After each iteration, x(t+1) is set to the minimizer
of the quadratic approximation. To build this problem, we
concatenate all the poses into a single decision variable
x = [x>1 , . . . x

>
T]> and optimize the quadratic approxima-

tion of the objective at x using the perturbation ∆x =
[∆x>1 , . . . ,∆x

>
T]>. Then we have that the error

eij(xi + ∆xi, xj + ∆xj) = zij − ẑij(xi + ∆xi, xj + ∆xj)

can be locally approximated using its first-order Taylor series

zij − ẑ(xi, xj)︸ ︷︷ ︸
yij

− ∂ẑ(xi, xj)

∂xi︸ ︷︷ ︸
Aij

∆xi −
∂ẑ(xi, xj)

∂xj︸ ︷︷ ︸
Bij

∆xj . (4)

We can then use this expression to construct a convex quadratic
approximation of the objective (3)

Fij(x + ∆x) ≈ ‖Ω1/2
ij (yij −Aij∆xi −Bij∆xj)‖22, (5)

where Ω
1/2
ij denotes the positive definite matrix square root of

the information matrix Ωij . By summing the approximations
for individual edges in (5), we get a quadratic approximation
for the PGO objective (3). To do this, we define the matrix A
with sparse block row structure

A =

0 . . . Ω

1/2
ij Aij . . . Ω

1/2
ij Bij . . . 0

...
...

...
0 . . . Ω

1/2
ij Aij . . . Ω

1/2
ij Bij . . . 0

 (6)

and the vector y as

y =
[
Ω

1/2
ij y>ij . . . Ω

1/2
ij y>ij

]>
. (7)

We emphasize that each block row of A and y are associated
with a distinct pose graph edge (i, j) ∈ E , but did not
differentiate the indices to avoid cluttered notation. Then the
local approximation to the PGO problem is given by the classic
least-squares problem

min
∆x
‖A∆x− y‖22 ≈ F (x + ∆x). (8)

The Gauss-Newton algorithm proceeds from an initial can-
didate solution x(0) and iterates between constructing A(k) and
y(k) by linearizing the objective around the current solution

x(k) and updating the the candidate solution using (8). The
solution of (8) at iteration k can be found by solving the
classical normal equations

(A(k))>A(k)∆x? = (A(k))>y(k), (9)

after which we update the estimated poses as x(k+1) =
x(k) + ∆x?. To develop fast solution methods for the PGO
problem (3), it is of paramount importance to take advantage
of the block sparsity structure in A and by extension of that
in (A>A). This is because robots map large areas that result
in pose graphs consisting of tens of thousands of nodes and
edges, making it intractable to use dense matrix algorithms
to solve the PGO problem in real-time. Instead, to solve the
normal equations, modern libraries such as g2o [10] favor
sparse equation solvers – based on Cholesky decomposition –
over methods such as conjugate gradient descent that are more
sensitive to the conditioning of the problem. The convergence
and sparsity pattern of the GN algorithm are shown in Figure
1.

IV. OVERVIEW OF MATRIX SKETCHING

The basic principle of matrix sketching is to reduce the
size of a large matrix A ∈ Rn×d before performing intensive
computations by multiplying it with a randomly sampled
sketching matrix S. The sketching matrix needs to be selected
carefully to ensure the impact of the dimensionality reduction
on the approximated result is low. In left-sketching, the pre-
multiplication SA is computed for an S ∈ Rm×n. If m << n,
then the sketched matrix SA ∈ Rm×d is smaller, reducing
computational complexity.

The sketching matrix S must have the property that

E[S>S] = I (10)

to guarantee that algebraic manipulations on the sketched ma-
trix, SA, are identical in expectation to those on its unsketched
counterpart, despite the reduction in size [8]. The sketching
matrix can be constructed in a number of ways: it can sample
more “important” entries of A more frequently, select rows
from a uniformly random distribution, or even generate a
Gaussian mixture of the columns. We briefly discuss these
techniques to inform our approach for the PGO problem.

The simplest method of generating S is to generate rows or
columns with one uniformly random nonzero entry of either -1

4

or 1. This is equivalent to selecting random rows or columns
of A. Figure 2 demonstrates this approach.

The entries of S can also be drawn from a Gaussian
distribution (Sij ∼ N (0, 1), scaled so E[S>S] = 1). This
is equivalent to “mixing” values from different columns of
the matrix A. Another popular method is the fast Johnson-
Lindenstrauss transform, which works well if some columns
of A are more “important” than others. The FJLT sketching
matrix preconditions A by rescaling its columns; they can then
be uniformly sampled with better performance [5].

Finally, row score sampling computes the row importance
scores of A, then samples the rows with a probability propor-
tional to their importance score. Let Ai be the ith row of A.
Then the row score pi is defined as

pi = ‖Ai‖22. (11)

The normalized row scores are then used to form a cate-
gorical probability distribution over the rows Ai. S is created
by sampling from this distribution: if Ai contains all zeros, it
will not be sampled, whereas a row with large norm ‖Ai‖22 is
more likely to appear in SA. A visualization of this approach
is seen in Figure 2.

Fig. 2. A large matrix (left) with some “unimportant” rows (‖A(i)‖22 close
to 0) is uniformly randomly sampled (yielding the matrix on the top right)
and sampled using row scores (yielding the matrix on the bottom right).

When A is dense, Gaussian or FJLT sketching methods can
be applied. However, if A is sparse, a sampling method is
preferred.

A. Selecting a sketching method for PGO

Matrix sketching algorithms generally perform well when
there is redundant information in a matrix: for example,
in a large least-squares regression problem there are many
more rows of data than columns. When some rows are more
important, row score sampling reduces the likelihood that
important information will be missing from the sketched

matrix. However, if there is very little extra information, the
sketched matrix cannot be made smaller and still approximate
the true matrix. We noted in section III that the block sparsity
structure in the PGO problem allows us to apply fast solution
methods for the Gauss-Newton subproblems. Therefore, we
apply row-importance sampling in our sketching algorithm for
this problem, as Guassian sketching loses the sparse structure
and naive row-sampling is likely to overlook the few denser
rows in the PGO problem structure.

V. APPLYING MATRIX SKETCHING TO PGO

As described in section III, each Gauss-Newton step for
a pose graph G = (V, E) requires solving a set of normal
equations in d = l|V| decision variables for n = l|E| data
samples, where l is the dimension of the poses (i.e., the matrix
in (8) is A ∈ Rn×d). The complexity of inverting an d × d
matrix (without taking advantage of any special structure) is
O(d3). Therefore, each iteration of the base Gauss-Newton
algorithm, requiring us to compute the solution to the normal
equations as

∆x? = (A>A)−1A>y,

which has a time complexity of O(nd2 + d3). Initially, we
hypothesized that we could apply right sketching to reduce
the size of the Gauss-Newton inverse. This would reduce the
computational cost of each iteration by updating a subset of the
decision variables. However such (right) sketched approximate
updates resulted in slower convergence and an increased
failure rate (divergence of the objective). Therefore, we used
a left-sketching method using row-importance sampling as
outlined in IV instead, limiting the computational gains to
graphs with large numbers of edges (many rows).

A. Implementation

We modified an existing implementation [7] of the algo-
rithm described in section III and [6] as our baseline. This
implementation is written in Python, allowing easy access to
the optimization code.

To apply left-sketching to the Gauss-Newton subproblem
(8) outlined in section III, we sample a sketching matrix S
at each iteration and approximately solve the subproblem by
minimizing

f(∆x) = ‖SA∆x− Sy‖22 (12)

to find the pose update ∆x?. The normal equations for the
sketched least-squares problem (12) are then given as

A>S>SA∆x = A>S>Sy. (13)

Using the defining property (10) that E(S>S) = I , we can see
that the sketched subproblem (12) solves the original normal
equations (9) in expectation.

if A is n× d, computing this solution in the general (non-
sparse) case requires multiplying A>A with cost O(nd2) and
inverting a d × d matrix with cost O(d3). By applying left-
sketching, reducing the number of rows in A to m << n,
we therefore achieve a linear time speedup per iteration from
O(d3+nd2) to O(d3+md2). The additional sparsity structure
retained from the row-sampling procedure can further speed

5

up the computation. This approach is discussed extensively in
[14].

Unfortunately, we found that there is too little redundancy in
the matrices produced by the SLAM front-end for sketching to
be effective in the benchmark suite [3]. In associating data with
features, the front-end must prunes less likely connections.
The resulting pose graph matrices are sparse and nearly
square: they contain very little extra information that can be
removed via sketching before the sketched normal equations
(13) become singular. The sizes of several public datasets are
listed in Table I.

Dataset 2D/3D # Edges # Vertices Edges/Vertices
MIT Killian Court 2D 827 808 1.024
Intel Research Lab 2D 1483 1228 1.207
Sphere 3D 8647 2200 3.930
Torus 3D 9058 5000 1.8096
Cube 3D 22236 8000 2.7795

TABLE I
COMPARISON OF GRAPH CONNECTEDNESS ON PUBLIC DATASETS [3].

B. Determining the Sketching Dimension

Left sketching is usually applied to an overdetermined sys-
tem with many more rows than columns. Recent results ([14])
have provided a bound to guide selection of the sketching
dimension m as a function of a high-probability bound on the
error ε between a sketched unconstrained NLLS solution and
the true optimum. For an unconstrained problem, the sketching
dimension m (recall if A is n× d, S is m× d) is bounded by

m ≥ c

ε2
min{n, d}.

The paper states c is a constant, while ε is a user-defined
error tolerance. This bound depends on min{n, d}, suggesting
overdetermined (n >> d) or underdetermined (n << d)
systems are most effectively sketched. Unfortunately, we found
that in most of our SLAM PGO datasets n/d is closer to 1,
indicating sketching will be less effective. These n/d ratios
are the edge/vertex ratios listed in Table I.

The “Sphere”, “Torus”, and “Cube” synthetic datasets have
more edges than vertices: we primarily worked with the
sphere because it has the highest ratio. However, these datasets
still cannot be sketched efficiently. While some of the edges
represent incorrect correlations between poses, it possible that
sampling will drop the correct correlation, leading to a Gauss-
Newton iteration that fails to converge.

C. Rejection of Poor Approximations

To mitigate this challenge, we introduced a rejection pro-
cedure: if the current cost is much larger than the previous
cost, the iteration is rejected. This prevents one poor sketch
of A from losing the previous iterations’ progress towards an
optimal solution.

D. Row Score Sampling of A

Initially, we tested random sampling: rows of A are sampled
uniformly randomly to construct SA. This is a simple and

efficient way to sample a matrix, but performs poorly if the row
scores (11) are not similar: conceptually, if all rows of A are
equally “important”, the approximation SA can be constructed
by randomly choosing rows of A. No prior information about
A is required.

To understand why A cannot be effectively randomly sam-
pled, we plotted the row scores (11) of A for the sphere in
Figure 3. The presence of the higher values suggests some
rows are more important: random sampling risks losing this
data. This makes intuitive sense, as uninformative edges in the
pose graph likely have an information matrix Ωij with small
eigenvalues, representing an unreliable measurement.

We therefore applied row score sampling, in which a
categorical distribution is constructed using the scores ‖Ai‖22
for i = 1, . . . , n. The rows to sample are drawn from this dis-
tribution without replacement, ensuring the “most important”
rows are likely to be sampled once, while the least important
rows are likely to be excluded. Figure 3 shows a histogram of
the row scores of A and SA. Notice the scores closest to 0 in
A are excluded in SA while the higher values appearing in A
continue to appear in SA.

0.0000 0.0002 0.0004
L2 squared row norm of A

100

101

102

103

104
L2 (A)

0 1000 2000 3000
L2 squared row norm of SA

N
u

m
b

er
of

en
tr

ie
s

L2 (SA)

Fig. 3. Histogram of row scores for A and subsampled SA (m = 0.85n).

VI. RESULTS

We benchmark our approach on the datasets in [3]. On
“real-world” 2D datasets, the baseline Python GraphSLAM
implementation [7] performed well. However, sketching failed
to converge due to the lack of redundant data.

On the larger, more connected synthetic 3D data, we were
able to apply row sampling with a very small size reduction
m = 0.95n but could not reduce the problem size enough to
reduce the computational cost.

Interestingly, the baseline GraphSLAM implementation
from [7] failed to converge on the sphere dataset. This is sus-
pected to be a limitation of the simple GraphSLAM package
as the more advanced g2o C++ package [9] was able to solve
all of the test problems in Table I.

Despite the failure of the baseline GraphSLAM, applying
sketching with no size reduction (m = n, equivalent to
randomizing the rows of A and corresponding values in y)
allowed our modified Gauss-Newton algorithm to converge in
40 iterations. We were able to achieve similar results with a
very small size reduction: sampling 95% of the rows of A.

6

−200
0

200
400 −200

0
200

0
100
200
300
400

Fig. 4. From left to right: Initial pose-graph of the sphere dataset (red represents the poses, blue lines represent the edges). Sphere dataset after 40 iterations
of randomized Gauss-Newton, sampling 90% of the rows of A. This sphere failed to fully converge. Sphere dataset after 40 iterations of randomized
Gauss-Newton, sampling 95% of the rows of A. Actual shape of the sphere dataset (from [3]).

However, 90% and smaller sketch sizes failed to converge,
with a few points remaining outside the sphere at each iteration
as shown in Figure 4. This suggests that about 5% of the
data in A is redundant: removing any more prevents the PGO
problem from fully converging (Figure 4).

Unfortunately, the computational cost of sampling A over-
takes any reduction gained by reducing the size of the least-
squares problem. Matrix sketching is typically applied to
problems where n can be reduced by large amounts: for
example, m = n/2 or m = n/4. Our pose graph matrices
are not good candidates for this procedure.

0 10 20 30 40 50
Gauss-Newton Iterations

105

107

109

1011

1013

C
os

t
fu

n
ct

io
n
χ

2

Baseline

100%

95%

90%

85%

Fig. 5. Cost function for the baseline Python GraphSLAM on the 3D sphere
dataset for several sketching sizes. Some runs were terminated early because
the objective function failed to decrease or suffered a sudden increase.

We also tested the torus dataset, but were unable to get
satisfactory results with any sampling size reduction (Figure
6).

Fig. 6. Left: Torus dataset after 40 iterations of randomized Gauss=Newton,
sampling 95% of the rows of A. Right: Torus dataset after 20 iterations of
the baseline GraphSLAM with no sketching.

0 10 20 30 40
Gauss-Newton Iterations

105

107

109

1011

1013

C
os

t
fu

n
ct

io
n
χ

2

Baseline

95%

Fig. 7. Cost function for the baseline Python GraphSLAM on the 3D torus
dataset for the baseline GraphSLAM and one sketching size.

VII. CONCLUSIONS

In this paper, we investigated the applicability of random-
ized linear algebra to reduce the computational cost of a
SLAM back-end using the Gauss-Newton algorithm. However,
we found that due to the lack of redundant information in
the pose graph matrices generated by the SLAM front-end,
the size of the matrix could not be reduced far enough to
achieve an increase in computational speed. We analyzed
the row scores of the pose graph matrices to determine the
“importance” of each row for sampling purposes, and observed
that while some rows have larger scores, about 95% of the
rows must be sampled to achieve an acceptable result.

Because the SLAM front-end filters out spurious correla-
tions, future work could include applying randomized methods
to bundle adjustment, an approach in which the front-end and
back-end operations are combined [4]. Alternative methods
of speeding up the SLAM back-end by taking advantage of
matrix sparsity and structure should also be considered.

VIII. ACKNOWLEDGEMENTS

This project was advised by Professor Mac Schwager for
AA 273: State Estimation and Filtering. The application of
sketching methods was inspired by Professor Mert Pilanci’s
class on randomized linear algebra: EE 270.

7

REFERENCES

[1] Zhong-Zhi Bai, Lu Wang, and Wen-Ting Wu. “On con-
vergence rate of the randomized Gauss-Seidel method”.
In: Linear Algebra and its Applications 611 (2021),
pp. 237–252. ISSN: 0024-3795.

[2] Luca Carlone. “A convergence analysis for pose graph
optimization via Gauss-Newton methods”. In: 2013
IEEE International Conference on Robotics and Au-
tomation. 2013, pp. 965–972.

[3] Luca Carlone et al. “Initialization techniques for 3D
SLAM: A survey on rotation estimation and its use in
pose graph optimization”. In: 2015 IEEE International
Conference on Robotics and Automation (ICRA). 2015,
pp. 4597–4604. DOI: 10.1109/ICRA.2015.7139836.

[4] Frank Dellaert. “Visual SLAM Tutorial: Bundle Adjust-
ment”. In: CVPR 2014 (2014). URL: http : / /www.cs .
cmu.edu/∼kaess/vslam%5C cvpr14/media/VSLAM-
Tutorial - CVPR14 - A13 - BundleAdjustment - handout .
pdf.

[5] Casper Benjamin Freksen. An Introduction to Johnson-
Lindenstrauss Transforms. 2021. arXiv: 2103 . 00564
[cs.DS].

[6] Giorgio Grisetti et al. “A Tutorial on Graph-Based
SLAM”. In: IEEE Intelligent Transportation Systems
Magazine (2010), pp. 31–43.

[7] Jeff Irion. Python graphslam documentation. 2019.
URL: https://python-graphslam.readthedocs.io/en/stable/
index.html (visited on 07/04/2021).

[8] Ravindran Kannan and Santosh Vempala. “Randomized
algorithms in numerical linear algebra”. In: Acta Nu-
merica 26 (2017), pp. 95–135.

[9] R. Kümmerle et al. “G2o: A general framework for
graph optimization”. In: 2011 IEEE International Con-
ference on Robotics and Automation (2011), pp. 3607–
3613.

[10] Rainer Kümmerle et al. “G2o: A general framework for
graph optimization”. In: 2011 IEEE International Con-
ference on Robotics and Automation. 2011, pp. 3607–
3613. DOI: 10.1109/ICRA.2011.5979949.

[11] D.G. Lowe. “Object recognition from local scale-
invariant features”. In: Proceedings of the Seventh IEEE
International Conference on Computer Vision. Vol. 2.
1999, 1150–1157 vol.2. DOI: 10 . 1109 / ICCV. 1999 .
790410.

[12] Raúl Mur-Artal and Juan D. Tardós. “ORB-SLAM2: An
Open-Source SLAM System for Monocular, Stereo, and
RGB-D Cameras”. In: IEEE Transactions on Robotics
33.5 (2017), pp. 1255–1262. DOI: 10.1109/TRO.2017.
2705103.

[13] Yu-qi Niu and Bing Zheng. “A new randomized
Gauss–Seidel method for solving linear least-squares
problems”. In: Applied Mathematics Letters 116 (2021),
p. 107057. ISSN: 0893-9659.

[14] M. Pilanci and M. J. Wainwright. “Newton Sketch:
A Linear-time Optimization Algorithm with Linear-
Quadratic Convergence”. In: SIAM Jour. Opt. 27.1 (Mar.
2017), pp. 205–245.

[15] Sebastian Thrun, Wolfram Burgard, and Dieter Fox.
Probabilistic Robotics (Intelligent Robotics and Au-
tonomous Agents). The MIT Press, 2005. ISBN:
0262201623.

[16] Joan Vallvé, Joan Solà, and Juan Andrade-Cetto. “Pose-
graph SLAM sparsification using factor descent”. In:
Robotics and Autonomous Systems 119 (2019), pp. 108–
118. ISSN: 0921-8890.

