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Abstract

In recent years, applications in autonomous driving have motivated a significant
research effort on sequential decision making agents that need to interact competi-
tively, yet safely, with other agents. In this project, we consider a simple police
pursuit setting; the objective is for the ego vehicle to close in as tightly as possible
on the opponent without being rammed. While the ego vehicle has observed a
history of safe interactions, closing the gap with the opponent necessitates ven-
turing into regions of the state space that have not yet been observed. In essence,
inducing a covariate shift between previously observed trajectories, and future
trajectories. In contrast to many of the examples discussed in class, the covariate
shift is not prescribed by the environment, but rather controlled by the ego agent.
In order for the ego agent to take more aggressive, yet safe, actions requires tightly
bounding the probability of collision of a function of the covariate shift. In this
project, we consider two scenarios: in the first, the ego agent fits a model to the
opponent’s known policy class. We then apply the exact uncertainty model towards
trajectory optimization using a particle approach. In the second, the ego agent fits
a model that is agnostic to the opponent’s policy class, removing our ability to
characterize epistemic uncertainty, so we constrain the policy updates to be small.
We find that the exact model class and particle MPC approach was able to achieve
strong performance. In contrast, the agnostic model class typically resulted in
infeasible optimization problems. Our results demonstrate the importance of using
all knowledge of problem structure when incorporating knowledge of covariate
shifts.

1 Introduction

To reliably deploy the next generation of autonomous robotic systems in unstructured open-world
environments, they must safely interact with other agents such as humans and other robots. In
many of these settings, such as when an autonomous vehicle must merge into traffic on a highway
on-ramp, the autonomous agent cannot communicate with other agents to form a collaborative
strategy. More importantly, automated systems will often have to compete with other agents to
force their objective. In the autonomous driving industry, interaction with other agents is typically
managed using trajectory forecasting methods that predict the trajectories of nearby agents. Given
these predictions, the planning and control stack then constructs a motion plan for the AV to avoid
collisions. However, such a naive approach does not take the influence of the ego’s motion plan on
the other agents into account.

Therefore, this requires the development of strategies that intelligently reason about the effect that the
decisions made by an automated robot have on the actions of the agents in its environment. Typically
the behavior of other agents is unknown and needs to be learned from data. However, an autonomous
agent cannot freely explore to learn about their opponents, as collisions and other dangerous events
should be strictly avoided. In this work, we propose to study interaction aware methods with safety
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guarantees in robotics by focusing on an autonomous police pursuit problem between two self-driving
cars.

We chose to pursue this problem because it represents an interesting scenario where the ego agent is
in control of the covariate shift: an update to the ego agent’s policy shifts the distribution of joint
trajectories of all the agents in a scene. This contrasts with many of the examples presented in class,
where the environment dictates the covariate shift. In our setting, the ego agent must produce a model
of the opposing agent’s control policy, and act within it’s safety constraints (i.e., the probability
of collision cannot exceed a certain threshold). We expect that producing competitive behavior
necessitates problem specific modelling to tightly bound the probability of collision as a function of
covariate shift. Similarly, we expect that when the model is agnostic to the opponent’s policy class,
the resulting bounds become too conservative for the ego agent to deviate from previously observed
trajectories.

2 Related Work

At a high-level, we segment existing methods for interaction-aware planning into two categories:

Ego-conditioned Trajectory Forecasting: One solution is to predict the joint evolution of the
trajectories of all the agents in a scene [1] or explicitly condition forecasts of other agents’ trajectories
on the motion plans of the ego vehicle [2], thereby capturing the joint interaction between the agents.
By conditioning the predictions on the decisions made by the ego vehicle in the planning stack, as
done in [3], these methods can reason about how others will react to the decisions made by the
autonomous vehicle (AV).

Modeling the opponent’s policy: Instead of forecasting the trajectories of others, other work models
the opponent’s policy directly, for example by directly fitting a parametric model of the opponent’s
policy to data [4]. This contrasts with game-theoretic approaches, such as [5, 6, 7], that anticipate an
opponent’s actions by assuming knowledge of their objective. Combining game-theoretic iterative
best-response algorithms with inverse reinforcement learning methods [8] to infer the objectives of
others was investigated in [9]. However, solving for a Nash equilibrium is generally computationally
intractable and these approaches do not take uncertainty on the learned objective into account. It is
unclear whether a certainty equivalent Nash-equilibrium found is still valid when noise is factored in.

If we have an explicit model of an opponent’s reactive decision making, we can reduce the multi-
agent control problem to a single-agent planning problem. This is because with an explicit opponent
model, the outcome of the multi-agent interaction is completely determined by the ego’s decision
making. Intuitively, updating the ego policy causes a covariate shift on the trajectory distribution
at deployment, therefore, we need to account for the deterioration in model performance to avoid
dangerous situations. Single agent planning under explicit representations of uncertainty in the
dynamics model parameters has become the core premise of the learning-based control (i.e., see
[10, 11, 12]) and model-based reinforcement learning (i.e., see [13, 14]) communities, resulting in
methods that implicitly consider the covariate shift induced by policy updates because they have
access to a globally accurate uncertainty estimates in the dynamics. In this work, we first consider
applying the particle MPC algorithm [12] to the reduced single-agent planning problem. This
algorithm takes a scenario approach [15] to optimize the trajectory of an uncertain system with safety
guarantees. However, oftentimes, like when we train deep trajectory forecasting models or apply IRL,
we do not have access to a distribution on the true parameters of the prediction model. Therefore, we
also develop analysis to explicitly extract the intuition that we need to constrain the policy updates to
be “small” to retain confidence in a model’s predictions.

Treating uncertainty in sequential or repeated decision-making problems through the lens of covariate
shift has been investigated in the literature previously to some extent [16, 17, 18]. For example, in
a single agent RL setting, Schulman et. al. compute trust-regions to constrain policy updates to
improve robustness [16] and in [18], the authors derive bounds on the modelling error in a repeated
static decision making problem, though neither approaches arrive at safety guarantees. At present,
we are not aware of methods that exploit the multi-agent nature of the problem we consider in a
model-based setting.

3 Set-up

In this paper, we consider a simple police pursuit example, where the ego (“police") vehicle is
following behind the opponent’s vehicle. The opponent’s strategy is to follow a nominal velocity, but

2



it attempts to ram the ego vehicle if it gets too close. The objective is for the ego vehicle to close in
as tightly as possible on the opponent without getting rammed.

Figure 1: Toy exam-
ple

Formally, our example is modelled by an environment with three states, x =
[∆p, vego, vop]

T , where ∆p is the distance between the ego and opponent, and
vego, vop are the velocities of the ego and opponent, respectively. The controls,
u = [uego, uop], represent the accelerations of both agents, and are bounded by∣∣∣u(i)

ego

∣∣∣ ≤ lego |uop| ≤ lop

where lego < lop. The opponent’s policy is modelled by a feedback law,

u(i)
op = πop

(
x(i); θ

)
= −θ1(v(i)op − vref)− θ2

1

∆p
.

We assume process noise in the controls is modelled by a zero-mean normal
distribution with variance σ2. Thus, the dynamics of the system are
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(i)
∗ ∼ N (0, σ2). A collision is defined by the event ∆p(i) < 0. Our

objective is to find an input trajectory for uego = π
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)
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collision. Specifically, we want to design a controller which solves the following optimal control
problem over a horizon of T timesteps
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 ,

P[∆p(i) ≥ 0, ∀i] ≥ 1− δ,∣∣∣u(i)
ego

∣∣∣ ≤ lego, |uop| ≤ lop.

(2)

Problem (2) optimizes the system trajectory, subject to a chance constraint that specifies our risk
tolerance for a collision. The dynamics (1) and the trajectory optimization problem (2) show that our
control problem reduces to a single-agent planning problem if we knew the policy of the opponent.
Instead, we approximate the policy of the opponent from data, and need to take our modeling
uncertainty into account.

4 Opponent Models

We consider two methods of modelling the opponent. Firstly, we apply ordinary least-squares to
identify the opponents’ policy. Then, we consider arbitrary approaches to model the uncertain closed
loop dynamics (1).

4.1 Modelling the Opponent’s Policy—Exact Hypothesis Class

In this section, we consider the setting where the model class of the opponent’s policy is known. In
particular, we seek to fit the three parameters, θ1, θ2 and Vref, given observations of x(i).

At each time step, an estimate of the opponent’s control action, ûi
op, is computed as

û(i)
op =

1

T
(v(i+1)

op − v(i)op ) (3)
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Given a trajectory up to time step K, the ordinary least squares regression of the parameters are then
given by

β̂ = (X⊤X)−1X⊤Y, X =


v
(0)
op

1
∆p(0) 1

v
(1)
op

1
∆p(1) 1

...
...

...
v
(K)
op

1
∆p(K) 1

 , Y =


û
(0)
op

û
(1)
op

...
û
(K)
op

 (4)

and θ1 = −β1, θ2 = −β2 and vref =
β3

β1
.

Given a future time step, the predicted controls are given by û = β̂⊤x(i), while the true controls as
given by u = β⊤x(i) + ϵ. By the standard bias-variance decomposition of the OLS estimator, the
expected error in the control estimates is given by,

EY [û− u | X,x(i)] = EY [β̂
⊤x(i) − (β⊤x(i) + ϵ) | X,x(i)]

= EY [((X
⊤X)−1X⊤(Xβ + ϵX))⊤x(i) − (β⊤x(i) + ϵ) | X,x(i)]

= EY [(β
⊤x(i) − β⊤x(i)) + ((X⊤X)−1X⊤ϵX)⊤x(i) + ϵ]

= 0,

and it’s variance is

EY [(û− u)2 | X,x(i)] = E[(((X⊤X)−1X⊤ϵX)⊤x(i) − ϵ)2 | X,x(i)]

= E[(((X⊤X)−1X⊤ϵX)⊤x(i))2 | X,x(i)]

− 2E[ϵ((X⊤X)−1X⊤ϵX)⊤x(i)) | X,x(i)]

+ E[ϵ2]
= σ2(1 + x(i),⊤(X⊤X)−1x(i)), (5)

showing us the predictive quality deteriorates when we stray from the training data. In particular, the
OLS estimator yields a distribution over the parameter β as

β − β̂ ∼ N (0, σ2(X⊤X)−1). (6)

We can then use the model distribution to safely plan the ego trajectory under model uncertainty.

4.2 Modelling the Opponent’s Policy—Agnostic Hypothesis Class

Besides the well-specified OLS setting, we consider a setting where the model class of the opponent’s
policy is unknown and we cannot quantify the uncertainty on the model parameters. To do this,
we simply ignore the uncertainty on the parameters of the OLS estimate (6) so we can construct
a strong baseline. Other common approaches include Gaussian Process regression [19], by fitting
a prediction model on historical trajectory data and using it in planning as in [13, 10], or fitting
deep neural networks [14]. While models like GPs are able to represent aleatoric uncertainty on the
closed-loop trajectories, resulting from the process noise ϵ, using an agnostic model removes our
ability to consider epistemic uncertainty on the parameters that results from the fact that our model is
innacurate far from the training data.

5 Particle MPC

In the OLS setting, we apply the particle model predictive control (PMPC) algorithm to optimize the
trajectory of the [12]. The particle MPC algorithm extends standard methods for nonlinear trajectory
optimization based on sequential convex programming (SCP) to account for model uncertainty
using a monte-carlo sampling approach. To optimize the chance constrained trajectory optimization
problem (2), the particle MPC algorithm samples M parameters from the uncertainty model over
the dynamics parameters in (6), {βk}Mk=1

iid∼ N (β̂, σ2(X⊤X)−1) and propagates the dynamics
x
(i+1)
k = f(x(t), u

(i)
ego;βk) forwards in the optimization procedure to approximate the uncertainty

over trajectories induced by the model uncertainty. Similarly, particles are sampled and propagated
for the process noise as well. By enforcing the collision avoidance constraint as a hard constraint
on all the particles, we can approximate the true chance constraint in (2), as well as approximate
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Algorithm 1: SCP PMPC

Require: Initial states {x(0)
i }Mi=1, dynamics models {fi}Mi=1, solution guess {xi, ui}Mi=1

Require: Hyperparameters ρx, ρu, Nc
Require: Solution tolerance ϵ

repeat
{f̄ (j)

i ,∇xfi,∇ufi}Mi=1 ← Linearize dynamics around the trajectory guess {xi, ui}Mi=1;
Split the cost into the convex and non-convex parts {c(j)i,cvx, c

(j)
i,ncvx}Mi=1;

{∇xc
(j)
i,ncvx, ∇uc

(j)
i,ncvx}Mi=1 ← Linearize non-convex cost around {xi, ui}Mi=1;

{∆x
(j)
i ,∆u

(j)
i }Mi=1 ← Solution to SCP step ;

{xi, ui}Mi=1 ← {xi +∆xi, ui +∆ui}Mi=1

until
∑M

i=1

∑N
j=0 ∥∆x

(j)
i ∥+ ∥∆u

(j)
i ∥ < ϵ;

return {xi, ui}Mi=1 =0

the expected cost by averaging the cost incurred by each particle. This approach is summarized in
algorithm 1, we refer readers to [12] for further algorithmic details. In addition, the particle MPC
algorithm is in essence a scenario optimization algorithm, and we refer readers to [15] for results on
selecting the number of particles to ensure that the chance constraint in problem (2) is satisfied.

6 Constrained Policy Updates

The goal of our work is to develop methods that reason intelligently about the covariate shifts induced
by a policy update on the quality of predictive models of the behavior of other agents. This is an
important problem of practical significance, because using innacurate predictions on other agents’
decisions a robot’s trajectory can result in dangerous situations. Intuitively, one should generally
expect their behavior model’s predictions to be accurate only close to the training data, and therefore
constrain policy updates to be “small” enough for the predictions to remain accurate throughout the
policy iteration process. In a safety-critical robotics setting, it is therefore important to carefully
consider the trade-off between changing our agent’s policy to improve it’s performance (exploration)
and retaining confidence in the outcome of the interaction (safety).

However, by specifying uncertainty models as in sections 4.1, and applying nonconvex trajectory
solvers that account for model uncertainty like the particle MPC algorithm as presented in section 5,
this trade-off is implicitly (and optimally) managed by the trajectory optimization solver: For the
OLS estimator we discussed in section 4.1, equation (5) shows that the uncertainty in the predictions
is a function of the state at which the prediction is made. By propagating the statistical uncertainty
on the learned model parameters, the particle MPC already takes this additional uncertainty into
account. In the most general setting, for example when we use deep generative neural networks for
trajectory forecasting as in [1] or use neural networks to represent the objectives of other agents [9],
we do not have access to posterior distributions over the model parameters, or the model may be
misspecified. Therefore, uncertainty aware planning algorithms cannot account for the deterioration
in the prediction quality that results from a covariate shift induced by a policy update in this setting.
Therefore, we present a generic analysis of the multi-agent trajectory optimization task in this section,
and use it to inform practical control design.

Consider a trajectory optimization problem on a horizon of length N . The ego robot has state x ∈ Rn

and takes inputs u ∈ Rm. The opponent has state y ∈ Rn and takes inputs z ∈ Rm. For simplicity,
assume that both agents follow the same (possibly stochastic) dynamics

xt+1 ∼ f(xt, ut), yt+1 ∼ f(yt, zt). (7)

We start by assuming that the opponent acts according to some policy on the joint state, i.e., that the
opponents actions satisfy some π : Rn × Rn → Rm. This yields interactive behavior between the
agents: the opponent conditions its behavior on both its position and the ego’s. We want to guarantee
that the agents avoid a collision with high probability. To represent this, let

x = [x⊤
0 , . . . , x

⊤
N ]⊤

y = [y⊤0 , . . . , y
⊤
N ]⊤
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be the trajectories of the ego and the opponent. Then, let A ⊆ RNn × RNn be the set of trajectories
where the ego and the opponent collide. For example, in our police pursuit example, the collisions are
determined by the relative position of the agents as A = {x,y : ∃t ∈ {0, . . . , N} s.t. p1t − p2t > 0}.
For another example, when both agents occupy euclidean balls of radius ϵ/2 around their respective
state, we get collision avoidance constraints (the complement of A) of the form

∥xt − yt∥ ≥ ϵ, ∀t = 0, . . . , N.

When we design the ego policy, we need to satisfy the collision avoidance chance constraint with risk
tolerance δ,

Pp(x,y)

(
(x,y) ∈ A

)
≤ δ. (8)

For shorthand notation, let A(x,y) be the event that the collision avoidance constraint is not satisfied
over the trajectory horizon, that is, when (x,y) ∈ A. Through our trajectory optimization procedure,
we get to decide p(x). Since the opponent makes decisions based on x, the marginal distribution
p(y) is not independent of x. But, since we know p(x), we can factor the joint distribution as

p(x,y) = p(y|x)p(x). (9)

However, the behavior of the opponent, p(y|x), is unknown. Instead, we approximate it using a
model with parameters θ: pθ(y|x) ≈ p(y|x). So, if we design p(x), we have the approximate joint
distribution pθ(x,y) := pθ(y|x)p(x). As before, we consider a policy iteration setting, so that θ was
learned from a trajectory dataset D = {(xi,yi)}Ni=1 collected using a different trajectory distribution
p′(x).

Note that we can use the particle MPC algorithm to enforce the chance constraint under the ap-
proximate joint distribution pθ. To conservatively enforce the chance constraint on the true joint
distribution using the approximate joint distribution, we introduce the following lemma.
Lemma 1. Let pθ(y|x) be the trajectory forecasting model parameterized by θ and fix the ego
trajectory distribution p(x). Then, if

Ppθ(x,y)(A(x,y)) + bound(θ, p(x), p(y|x)) ≤ δ, (10)

it holds that Pp(x,y)(A(x,y)) ≤ δ. Here, we define

bound(θ, p(x), p(y|x)) :=
√

1

2
Ep(x)

[
DKL(p(y|x)||pθ(y|x))

]
. (11)

Proof. To construct the bound, notice that∣∣Pp(x,y)(A(x,y))− Ppθ(x,y)(A(x,y))
∣∣ = ∣∣Ep(x)[Pp(y|x)(A)]− Ep(x)[Ppθ(y|x)(A)]

∣∣
≤ Ep(x)

[
|Pp(y|x)(A)− Ppθ(y|x)(A)|

]
(Jensen’s inequality)

≤ Ep(x)

[
TV

(
p(y|x), pθ(y|x)

)]
(Def. of Total Variation Distance)

≤ Ep(x)

[√1

2
DKL(p(y|x)||pθ(y|x))

]
(Pinsker’s inequality)

≤
√

1

2
Ep(x)

[
DKL(p(y|x)||pθ(y|x))

]
(Concave Jensen’s).

Using the bound, we see that

Pp(x,y)(A(x,y)) ≤ Ppθ(x,y)(A(x,y)) + |Pp(x,y)(A(x,y))− Ppθ(x,y)(A(x,y))|
≤ Ppθ(x,y)(A(x,y)) + bound(θ, p(x), p(y|x)).

Therefore, enforcing the conservative constraint (10) ensures the collision avoidance constraint (8) is
satisfied.

The lemma states that if we know an upper bound on the expectation in equation (11), then we can
guarantee the robots do not crash at runtime with probability at least 1 − δ. However, we cannot
evaluate the bound, as we do not know p(y|x), that’s the whole point of this analysis. Instead, we
learn pθ with trajectory data that we collected when we deployed the robot using a different ego policy
p′(x). The core issue is that pθ(y|x) won’t approximate p(y|x) well when we stray into regions of
the state space where p′(x) did not wander. However, notice that a typical objective when we regress
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a distribution is to minimize the KL divergence between the true and the learned distribution. That is,
when we fit pθ(y|x), we approximately solve

min
θ∈Θ

{
Lp′(θ) := Ep′(x)

[
DKL(p(y|x)||pθ(y|x))

]}
, (12)

through empirical risk minimization by minimizing the negative log-likelihood of the model over the
training data. Therefore, to instantiate the bound in lemma 1, we relate expected loss of the model
under the old policy p′(x) that we used for data-collection to the expected loss of the new policy p(x).
To do this, we make use of the variational representation of the KL-divergence.
Theorem 1. [Donsker and Varadan’s variational representation [20, 21]] Let p and p′ be two
probability measures on the sample space X . Then, it holds that

DKL(p||p′) = sup
g:X→R

Ep[g(x)]− logEp′ [eg(x)]. (13)

As a direct corollary of theorem 1, we can bound the expectation in the bound (11), that is Lp(θ),
using knowledge of the old policy.
Corollary 1. When we fix the function g(x,y) in theorem 1 as the loss function ℓ(x,y; θ) =

log( p(y|x)
pθ(y|x) ), it follows from theorem 1 that

Lp(θ) := Ep(x)

[
DKL(p(y|x)||pθ(y|x))

]
≤ DKL(p(x)||p′(x)) + logEp′(x,y)[e

ℓ(x,y;θ))], (14)

since the covariate shift setting implies that DKL(p(x)||p′(x)) = DKL(p(x,y)||p′(x,y)).

Therefore, we can essentially bound Lp(θ) using a quantity that we can estimate from the dataset
D sampled using p′; and the shift between the old trajectory and the new trajectory, which we can
control when we run a trajectory optimization routine. Therefore, (14) and lemma 1 make it explicit
that we need to limit the divergence between policy updates to maintain confidence that we will not
cause a collision. Alternatively, if we merely considered the negative log-likelihood of the model
and not the likelihood ratio as the loss function, the conditional entropy of y given x under p′ would
additively appear in the bound (14). In both cases, this constitutes a term that we would need to
estimate from an empirical sample.

Instead, we note that if we are able to exactly learn p(y|x) over the support of the old policy p′(x),
i.e., when Lp′(θ) = 0, this implies that the log term in (14) vanishes. In this case, lemma 1 shows us
that we would only need to tighten the chance constraint to account for the shift in the ego-trajectories.
Under such an assumption, if we constrained our policy update to lie in the KL-ball

P = {p(x) : DKL(p(x)||p′(x)) ≤ ρ},
then lemma 1 gives us that enforcing the conservative chance constraint

Ppθ(x,y)(A(x,y)) ≤ δ −
√

ρ/2

in a particle MPC problem, ensures the true chance constraint (8) will be satisfied upon deployment
of the policy. In our experiments, we use this approach as a practical method to constrain our policy
updates to be “small enough” so that we improve the safety of the system. We consider a complete
theoretical treatment, applying uniform convergence bounds and fully instantiating the bounds we
discussed as the main direction for future work. In addition, we note that we can cast the problem of
upper bounding Lp(θ) through lens of distributionally robust optimization [22, 23], as

Lp(θ) ≤ sup
p∈P

Ep(x)

[
DKL(p(y|x)||pθ(y|x))

]
,

suggesting distributionally robust training of the forecasting model as an interesting direction of
future work.

7 Empirical Results

In this section, we seek to evaluate the extent to which the exact and agnostic hypothesis classes allow
for exploration while counterbalancing the safety requirements. We evaluate both hypothesis classes
with two means of instantiating the chance constraints: (1) using particle MPC and (2) through the
heuristic developed in Section 6. In particle the MPC setting, we instantiate the chance constraints by
sampling from our uncertainty set, and enforcing the constraint that the appropriate percentage of
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(a) Baseline Particle MPC Approach (b) ρ Constrained Strategy (c) Comparison

Figure 2: Loss evolution per episode in episodic RL. Particle MPC approach improves quickly after
the first episode, whereas the performance of the ρ constrained approach varies depending on the
selection of the ρ value. All ρ approaches perform worse than the Particle MPC baseline.

particles satisfy the safety constraints. In the heuristic setting, we leverage the result of Lemma 1,
which states that true probability of collision is bounded by the probability of collision in the learned
model and the KL divergence between the learned and true distributions. However, since the true
distribution is unknown, the bound provided in Lemma 1 is not directly actionable. Instead, we
leverage the fact that pθ(y|x) should approximate p(y|x) well in the regions of the state-space that
have been observed, i.e., D = {(xi,yi)}Ni=1, and enforce an ℓ2 bound on the difference previously
observed trajectories and future trajectories as a proxy for constraining the divergence between
trajectory distributions resulting from the process noise.

We found the nonlinear trajectory optimization to be highly numerically unstable and sensitive to
hyperparameters settings. For instance, we also tried representing the agnostic hypothesis class as a
GP, yielded small fit error to the predicted dynamics’ history, but ultimately resulted in infeasible
optimization problems, even with smoothness enforced. Figure 2 shows the major results of trajectory
optimization and compares the two methods. We found that the particle MPC approach was able
to improve rapidly after only one iteration. In contrast, the ρ-constrained loss consistently had
worse loss than the particle MPC. We found that an intermediate value of ρ = 10 led to the most
consistent decrease in loss in each subsequent iteration. Intuitively, this result is not surprising since
the parameter ρ is meant to strike a balance between exploration and exploitation. The experiments
confirm that if we make ρ too small, the system is unable to explore and improve its performance.
Conversely, if ρ is too large e.g., when ρ = 1e3, the robot explores in regions where the model
confidence is low, resulting in high trajectory cost resulting from constraint violations especially
when little data is available.

8 Discussion and Conclusions

In this project, we have constructed a police pursuit toy problem to study the role of covariate shifts in
principled navigation of the exploration-exploitation trade-off under safety constraints. We modelled
the opposing agent both using the exact hypothesis and an agnostic hypothesis class. Given both
of these models, we also solved our MPC problem using a particle MPC approach, and with a
heuristic based on Lemma 1. We found that the agnostic hypothesis class often resulted in unfeasible
optimization problems, despite having low loss on the fitted points. We also found that the heuristic
approach resulted in far higher losses than the particle MPC approach. In conjunction, our results
underscore the importance of utilizing all knowledge of the problem structure; as a rule of thumb, we
found that generality came at the expense of being too conservative to be practically useful. Still,
our results seem to support the intuiton that if uncertainty estimates on the model parameters are
not available, constraining policy updates results in improved performance, even though learning-
based control algorithms that leverage uncertainty estimates on the model parameters are tough to
outperform. In future work, we could consider robust training of the prediction models to account for
the covariate shift induced by policy iteration, and sharpening the bounds we developed by leveraging
more problem specific structure, like smoothness of the dynamics.

9 Appendix

Code can be found here: https://tinyurl.com/rrr-cs329d
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