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Abstract— The Oversized Load Lifting and Yielding (OLLY)
robots carry long extended loads between them. The front robot is
controlled by user input, while the rear robot maps the surroundings
using a SLAM algorithm from LIDAR data and autonomously
follows the front robot at a fixed distance. We implemented
two model-predictive controllers to maintain robot distance, stay
within road constraints, and minimize actuation. A set of three
omnidirectional wheels allows the robots to handle any velocity
command whether from user input or from controller output. In
tests, the follower robot was able to hold the loading distance within
±1 inch while (1) turning a corner and (2) staying on a fixed line.
A video demo can be found here[7].

Fig. 1. Finished picture of the OLLY robots, with Folly on the left and Molly
on the right

I. INTRODUCTION

In order to transport large objects over land which cannot fit
into one truck (”loads”), modern transportation companies utilize
a complex sequence of operators, machinery, and vehicles. Most
commonly, one master truck will drive the front of the load while
a follower truck will carry the back of the load. Each driver
communicates and moves slowly in order to navigate difficult
turns and terrain. In addition to these drivers, other safety officials
might be standing by in order to ensure that the two drivers have
all the information they need to drive safely.

Project Olly aims to bring a novel robotic solution to this trans-
portation issue using an autonomous application. By equipping
the follower vehicle with sensors to map the surroundings, the
follower robot will autonomously track the motion of the master
robot, thereby removing the need to have more than one operator.
To demonstrate this solution, two squat Oversized Load Lifting
and Yielding robots (termed ”Olly”) were created to model the
motion of these vehicles. The Master Olly (termed ”Molly”)
receives user input in order to move in any direction while the
Follower Olly (termed ”Folly”)1 manages to keep the load at a
fixed distance.

The Olly robot is broken down into four components. First, the
chassis and drivetrain use omnidirectional wheels with stepper
motors to accurately move in any directional input. Second, the

1In some places, the follower Olly is just termed ”Olly.” For the sake of this
report, the convention of ”Molly” and ”Folly” will be used.

gripper attaches the oversized load between Molly and Olly.
Third, a LIDAR sensor works with a Raspberry Pi and Arduino to
process on-board sensing and motor commands. Lastly, a model
predictive controller determines Olly’s ideal absolute velocity
based on Molly’s motion. The Folly robot was able to track the
Molly robot in a variety of situations to within a few inches of
the desired place, which did not strain the load due to compliance
on the attachment point.

II. MECHANICAL HARDWARE

A. Chassis

Olly’s chassis features a lightweight, waterjet aluminum base-
plate that is identical across both Molly and Folly robots. The
chassis is designed to be a rigid, load bearing platform that
fundamentally serves two purposes. First, the chassis integrates
the mechanical subsystems. The baseplate undercarriage mounts
to the drivetrain, doubly supporting each drive axle and ensuring
a precise 14cm wheelbase radius to create a robust platform for
control. Vertical standoffs atop the baseplate affix the gripper
mechanism. Second, the chassis achieves electrical hardware and
sensor integration. Careful hardware placement ensures proper
cable management, accessibility, precision 15cm LIDAR mount-
ing radius, and 360 degree LIDAR field of view.

Fig. 2. CAD Model of Chassis and Drivetrain

B. Drivetrain and Dynamics

Each Olly is actuated using 3 omni-directional wheels to
create a holonomic drive system. These wheels are actuated using
NEMA 17 stepper motors, which were chosen for simple open
loop control. While inefficient, these motors still have a sufficient
holding torque of 0.49 Nm and operate well for our slow target
velocity. A custom driveshaft was designed for each wheel. A
holonomic drive was chosen for the robot to allow it to move
in any direction without having to reorient its heading. The 3-
wheeled variant of the omniwheel system was chosen because
it produces a nonsingular transformation matrix relating wheel
motion to cartesian motion. On the other hand, a 4-wheeled
omniwheel system is nonsingular and multiple actuation methods
can produce the same motion.

In order to develop the system kinematic model, it is assumed
that the wheels will never experience forces that exceed the
limits of static friction. Also, it is assumed that the wheels slide
perfectly in their perpendicular directions. These assumptions



produce the following transformation for the conventions as
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Fig. 3. Drivetrain kinematic model conventions

C. Gripper

In order to attach loads to both Molly and Folly, a mecha-
nism is needed that can attach to a variety of objects without
putting undue stress on the object being carried. The gripper
accomplishes this through three components. First, the actual
gripping is accomplished via a custom vise with rubber padding
to ensure minimal damage to the load. This vise is bolted to a top
mounting plate, which has many threaded holes to facilitate any
other method of load attachment. Next, on Folly, a linear rail
provides translational compliance for this top mounting plate,
since the vise can then freely slide back and forth along the
load’s mounting axis. This allows for Folly to be ±5cm of the
proper distance away from Molly without pulling on the other
robot. Lastly, both robots have a large thrust bearing beneath the
vise in order to introduce rotational compliance on the direction
of the attached load.

Fig. 4. CAD Model of the Gripper on Folly

This compliance is important to ensure that the omnidirectional
drive can rotate freely beneath the load without being concerned
about one specific orientation. These three features make up the
gripper, thereby isolating the process of the load attachment from
the motion of the wheels, which importantly allows for each robot
to be treated as a particle for the following control algorithms.

III. ELECTRONIC HARDWARE

A. System Architecture

Figure 5 shows a high level overview of our system archi-
tecture. Both Molly and Folly are equipped with computers that

Fig. 5. System Architecture Diagram

run a Linux operating system (Ubuntu 16.04 LTS) and a micro-
controller (in this case Arduino Nano’s). The Linux computers
connect through USB to the sensors to receive data, as well as
to their respective microcontroller to send and receive actuation
commands and feedback. Although this work only fully utilizes
the sensor capability of the LIDARs, all our vehicles equip
LIDARs, Indoor GPS beacons, and IMUs. The microcontrollers
interact with the stepper motors through direct PWM interface
as mentioned in the following section.

Additionally, the Molly and Folly operating systems are con-
nected to an external Linux computer through a local Wifi
Network managed by Folly. The Wifi network allows Molly and
Folly to exchange information freely with each other using TCP
over SSH connections. Moreover, a connection with an external
computer allows Molly and Folly to offload computational load
from the planning, estimation, and control algorithms by sharing
sensor data and running these algorithms remotely. In addition,
a human operator can give commands to, or control the system
by sending inputs through the external computer, for example by
using an Xbox controller. All of the code written for this project
is accesible online, and access can be requested by following the
link in [6].

B. Arduino and Motor Drivers, and Embedded Software

The Raspberry Pi sends velocity commands to an Arduino
Nano which used the kinematic model described above to convert
the commanded velocity into PWM signals. The Arduino Nano
sends 5V digital commands to actuate steps, which are received
by DVR8825 motor drivers. Each robot has three motor drivers,
one associated with each stepper motor. Each driver received
discrete ”step” signals from the Arduino as well as a 12V power
directly from the system’s LiPo battery.

The stepper motor drivers inherently control for position, so
the embedded software on the Arduino had to adjust the timing
of the step commands so that the system could be driven with
velocity instead of position-based commands.

C. Computer

The external Linux computer, running Ubuntu 16.04 LTS with
ROS Kinetic, connects to the onboard computers on Molly and
Folly through Folly’s local Wifi network. In addition to running
the ROS master, it handled the majority of the computational
load, connected to the Xbox controller, and ran the Rviz display.

D. LIDAR

Both Molly and Folly are equipped with RPLIDAR A2 [1]
Light Detection and Ranging (LIDAR) sensors. These sensors



Fig. 6. Map Generated From the SLAM Algorithm

rotate at high velocity and fire laser beams into their surround-
ings. The LIDARs detect the light that bounces back, which
gives them spatial information of their environment. This data
is accumulated over time, and is used by the robots to build a
map of their environment and localize themselves inside it, as
described in a later section.

IV. SOFTWARE SYSTEM

A. Robotics Operating System

We implemented our code using Robotics Operating System
(ROS), a framework that has become the industry standard used
for complex robotics software development. In ROS, separate
algorithms or sections of a system run as parallel processes
referred to as ’nodes’. Each node publishes/subscribes to topics
of specific message data types, allowing for highly modular
development and easy implementation of open source packages.

Molly and Folly each have a Raspberry Pi running Ubuntu
16.04 with ROS Kinetic. We leveraged the ROS’s Multiple Ma-
chines framework to setup the communication networks between
the robots discussed in the previous section.

Our high level algorithms are wrapped in nodes implemented
in Python 2.7. The low level node that controls motor PWM
signals to track robot state velocity references was written in C++
and runs on the Arduino. The LIDAR driver node runs on the
Raspberry Pi. The rest of the nodes run on the external computer,
such as the path planning, joystick input conversion, and SLAM
nodes.

B. State Estimation through LIDAR based SLAM

As mentioned above, a LIDAR sensor was mounted on each
Olly. We used the point-cloud data from these sensors to build
environment maps. To do this, we used a Simultaneous Local-
ization and Mapping (SLAM) algorithm called Hector Slam [8].
Figure 6 is a map that we built of the basement of Hesse Hall
at UC Berkeley. In the image, the darker a line is, the more
confident the robot is that that region is a solid wall.

SLAM algorithms are probabilistic algorithms that hinge
around non-linear Kalman Filters (EKF in this case). First off,
the maps and LIDAR scans that are generated are represented
by Occupancy Grids, discrete grids representing 2 dimensional
space. The value at an x-y coordinate (1 or 0 for the LIDAR
scan, or a probability value) represents the certainty that an object
exists at that location. First the SLAM algorithm tries to find the
current position of the robot by matching an incoming LIDAR
scan to the map it previously built by solving an optimization

problem of the form:

x̂∗init = arg min
x̂init

n∑
i=0

[1−M(Si(x̂init))]
2 (1)

Where M(·) represent the value of the map at a global coordinate
position and Si(·) represents the transformation of the i’th lidar
scan coordinate into the global map frame by x̂init.The x̂∗init
resulting from this scan matching step is then used by an
Extended Kalman Filter and any (optional) other sensors to
generate a state estimate. A similar procedure is then run in
reverse to update the map.

In our application, we have two robots that move around
independently, which makes it much harder to build a single map
using both robots’ lidar scans and state estimates. Localizing one
robot in a map built by the other gives ambiguity as to which
robot should be building the map, since our problem setup results
in both robots seeing vastly different sections of the world that
may or may not have been mapped yet. Instead we ended up
relying on the Hector Slam implementation available to us, with
both robots SLAM-ing their environments independently from
each other. We operate from the assumption that the robots are
initially at a given relative orientation, which we then use to
transform the state estimate from Folly into the global frame
of Molly. We found this to be sufficiently accurate for our
application since lidar based SLAM is not subject to sensor drift.
Moreover, the probabilistic nature of these algorithms makes
them robust enough to ignore the other Olly vehicle. Although
both lidar sensors are scanning the same spatial plane (since both
Molly and Folly have identical design), we found interference
from the sensors to be negligibly small.

C. Joystick control

Molly was controlled by an Xbox controller connected to
the external computer. For the joystick driver, we used the
Joy package which published the controller state [2]. We then
converted those inputs from inertia to body frame using the
orientation of Molly as determined from SLAM.

D. Path Planning and Control

Project Olly uses receding horizon optimal control strategies
commonly referred to as Model-Predictive Controllers (MPC)
to achieve autonomous operation of the Folly. The MPC uses
an estimate of Folly’s current position, the current position and
velocity states of Molly, a simple dynamic model, and preset
constraints on states and inputs to achieve an objective over
time. From a high level, these objectives are (1) to maintain a
preset distance from Molly, (2) keep Folly within a specific map
area, and (3) minimize actuation. For Project Olly, we created
two different MPC algorithms, described in Sections IV-D.2 and
IV-D.3 below, each of which achieves the aforementioned in a
different manner.

1) The MPC Dynamic Model: The MPC assumes the follow-
ing dynamic model of Olly, where k designates a specific discrete
time, and ∆t is the time between time k and k + 1.

 xy
θz

k+1

=

1 0 0
0 1 0
0 0 1

 xy
θz

k +

∆t 0 0
0 ∆t 0
0 0 ∆t

vxvy
ωz

k (2)

To simplify and incorporate standard MPC notation, we make



the following substitutions.

x =

 xy
θz


A = I3

u =

vxvy
ωz


B = ∆t · I3

Therefore, Equation (2) becomes Equation (3).

xk+1 = Axk +Buk (3)

2) Analytical MPC Position Control: Folly is constrained to
move along a line in the inertial frame. Folly uses the current
position of Molly and the known lifted-object length l to deduce
the circle of points that maintain a distance l. The intersection
of the line and circle yields two possible optimal positions for
Folly, so Folly selects the optimal position closest to its current
position estimate. This selected optimal position becomes the
setpoint (xm, ym) inertial position for Folly for the following
MPC.

At every discritization time, the optimization problem of Equa-
tion (4) is solved, where n is the horizon, the number of discrete
times in the future considered, x0 is the current state estimate of
Folly, and umax is the maximum allowed actuation commands.
To prevent Folly from arbitrarily rotating yaw, and incorporating
the desired optimal position from above, the selected optimal
state is defined as xm = [xm, ym, 0]

>
and incorporated into the

MPC. Using Molly’s broadcasted velocity state, Folly predicts
Molly’s future states by assuming Molly’s velocity won’t change,
meaning that the circle and line problem is solved for each time
step. The solved ut of the final MPC of Equation (4) will allow
Folly to track the optimal setpoint position.

min
∀xt ∀ut

n∑
t=1

100 · ‖xt − xm‖2 + ‖ut‖2 (4)

s.t. xt = Axt−1 +But ∀t ∈ [1 . . . n]

x0 = x0

ut ≤ umax ∀t ∈ [1 . . . n]

For Folly, this MPC was implemented in Python with convex
solver CVXPY[5]. We selected a discritization step time 0.3s,
horizon 10, and an element-wise umax of 0.1 m/s. Every discriti-
zation step time, u1 is sent to the the arduino for actuation, and
the problem is then updated with the current state and resolved.

3) Nonconvex MPC: Folly is constrained to move within a
specific convex region of inertial space X that is preset in agree-
ment with the map road. Incorporating the previous notation,
except that now xm is Molly’s current position estimate, at each
discretization time, the optimization problem of Equation (6) is
solved. Using Molly’s broadcasted velocity state, Folly predicts
Molly’s future states by assuming Molly’s velocity won’t change,
meaning that that Folly anticipates Molly’s future position in the
problem.

min
∀xt ∀ut

n∑
t=1

10 ·
∥∥∥‖xt − xm‖2 − l2

∥∥∥2 + ‖ut‖2 (5)

s.t. xt = Axt−1 +But ∀t ∈ [1 . . . n]

x0 = x0

xt ∈ X ∀t ∈ [1 . . . n]

ut ≤ umax ∀t ∈ [1 . . . n]

Fig. 7. The first figure shows Folly following Molly according to the MPC of
Section IV-D.3 for an arbitrary road constraint. The second figure shows Folly
following Molly according to the ME102B demo. The second figure shows the
road only while there are three active constraints that form three sides of a box at
any given time not shown in the second figure. As Folly moves, the three active
constraints reflect the current section of the road.

The simplified Equation (5) encourages Folly to stay on the
radius l circle around Molly and minimize actuation while within
a road-like constraint. While the object function is not convex,
all local minima are global mininma, due to the symmetry of the
cost function.

This MPC was implemented in python with solver GEKKO
[4]. We selected a discretization step time 0.3s, horizon 10, and
an element-wise umax of 0.1 m/s. Every discretization step time,
u1 is sent to the the arduino for actuation, and the problem is
then updated with the current state and resolved. Figure provides
an example path of Folly following Molly using the MPC.

In the normal movement of Folly, the road map will create
overlapping road constraints that cannot be satisfied simultane-
ously (e.g., an L shaped road cannot be described as a single
convex shape). To account for this, Folly caches multiple Equa-
tion (6) MPC problems, each covering a section of the map. Each
MPC problem is identical except for X . The current position of
Folly determines which cached MPC is solved. To account for
sensor noise, we added additional slack variables, denoted by
λ = [λ1, . . . , λn]T , to soften the polytopical state constraints.
These soft constraints maintain feasibility of the problem when
sensor noise pushes Folly out of the desired feasible region. This
results in the following final MPC problem:



min
∀xt ∀ut

n∑
t=1

10 ·
∥∥∥‖xt − xm‖2 − l2

∥∥∥2 + ‖ut‖2 + C

n∑
t=1

λt

(6)
s.t. xt = Axt−1 +But ∀t ∈ [1 . . . n]

x0 = x0

Gxt − h ≤ λt ∀t ∈ [1 . . . n]

λi ≥ 0∀t ∈ [1 . . . n]

ut ≤ umax ∀t ∈ [1 . . . n]

In our implementation, C = 1.
4) Comparison of MPCs: The MPC of Section IV-D.2 re-

stricts the motion of Folly to a line; however, the optimization
problem is convex and easy to solve. The MPC of Section
IV-D.3 restricts the motion of Folly to a convex set; however,
the optimization problem is nonconvex which complicates the
robustness of the solution. We prepared both planners anticipating
that the solver of Section IV-D.3 might fail in the demo; however,
this did not happen. Since the MPC of Section IV-D.3 better
achives the Project Olly objective and is able to afford better
road mobility, it is the better MPC.

E. Rviz

To assist in debugging as well as explaining concepts during
the demo, we used Rviz [3], a visualization software commonly
used in ROS. We used it to show the map built from Folly’s
LIDAR data, the direct LIDAR laser scan, and the positions and
orientations of both Molly and Folly.

V. RESULTS

All of the results of the demonstrations can be seen in the
corresponding video. [7]

The first two demonstrations of Project Olly serve to show
how well Folly can keep a given distance given differing external
boundaries. In the first test, Folly is given six constraints within
the L-shaped track, while in the second test, Folly is given only
the constraint of staying on a straight line. In both tests, Folly is
able to meet the obstacle constraint as well as the distance from
Molly constraint within ±1 inch, which is determined based on
the fact that the gripper translational compliance only has a range
of that distance. It is worth mentioning that the controller for
Folly runs into issues when the control of Molly pushes Folly
towards a wall. In this way, the controller has to decide between
violating either a wall constraint or a fixed distance constraint.
In some cases, the controller is smart enough to avoid this issue,
but when Folly is belligerently sent into the corner the controller
can fail. Besides this one place of concern, Folly keeps up rather
well with Molly. The gripper isolates the motion of the robot
from the load itself and the omnidirectional wheels serve well to
allow for complex motion.

In the third demo, one of the robots is told to go to multiple
waypoints on a square using only the LIDAR as the sensor.
Visually, the robot accomplishes this motion very well even with
the lack of sensors. This result shows the success of the SLAM
algorithm in positioning the robots in space.

VI. CONCLUSION AND FUTURE WORK

Through these tests, Project Olly was able to demonstrate
the success of autonomous control of one robot based on the
controlled input of another. Though Folly’s positioning was
inherently not exact, the compliance within the gripper ensured
that the SLAM map’s positioning would be sufficient to localize
each robot with respect to one another. Additionally, while the
robots moved relatively slowly due to less powerful motors, each

robot moved correctly, overcame heavier loads, and navigated
through the designed geometry well.

For future iterations, the robots certainly could be made more
robust in two manners. First, the hardware could be improved
by upgrading the motors and adding additional sensors. A more
sophisticated gripper could also be used to attach a wider variety
of loads. Second, if more time had been allowed, more compli-
cated tracks would result in more complex road constraints, so
improving the way Folly handles the surroundings would help the
autonomous robot be more robust. Other functionalities which
would be worthwhile to explore would be object detection and
avoidance. A robot with four-wheel drive also could be useful in
representing how this control could be implemented in cars.

Regardless of these improvements, Project Olly still succeeded
at showing how multiple robots can work together to simplify
transportation challenges. By understanding the design method-
ology used here as well as the successes showcased in the project,
one can understand how robotic solutions can be reduced to
simpler terms in order to solve non-trivial real-world problems.
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APPENDIX

In this paper, x, y, z, correspond to the Cartesian position
state where x and y are the lateral coordinates with x generally
meaning forward and z meaning upward, and x, y, and z
forming a right-hand coordinate system. The velocities in the
corresponding coordinate axes are denoted vx, vy , vz; the Euler
angle positions, θx, θy , θz ; and the Euler angle velocities, ωx,
ωy , ωz . For any states with respect to the body frame of the drone
(centered at the drone center of mass with the aforementioned
directional definitions) have the super script B, whereas, with no
superscript, the states are global. A concatenates state vector is
in bold, for example, x and u. The length of time in between
iterations is ∆t, either in the simulator or in the controller. The
iteration number of a specific state is denoted with a subscript,
with x0 being the x position state at present.

Fig. 8. Prototyping Test Platform


